20th century

20th Century

  • Aston, Francis William (1877-1945)
    Born: Harborne (England), 1877 Died: Cambridge (England), 1945
  • Aston studied chemistry at the University of Birmingham. In 1910 he went to Cambridge to work under J. J. Thomson. Aston’s mass spectrograph showed that most stable elements were a mixture of isotopes, differing in mass but not in chemical properties. Using this device he was able to discover 212 of the 287 stable isotopes.
    Aston was awarded the Nobel Prize in 1922.
  • Barton, Derek Harold Richard (1918-1998)
    Born: Gravesend (England), 1918 Died: College Station, Texas (US), 1998
  • Barton obtained his Ph.D. in organic chemistry at the Imperial College, London in 1942 and in 1945 joined the faculty. In 1950 he published his work on the relationship of the three-dimensional structure of organic compounds in relation to their chemical properties. This concept of conformational analysis changed dramatically the nature of organic chemistry research. For this breakthrough effort Barton was awarded the Nobel Prize in 1969 (sharing the prize with Odd Hassel). Barton continued his work on the synthesis of natural products and the development of new synthetic reactions.
  • Bosch, Carl (1874-1940)
    Born: Cöln (Germany), 1874 Died: Heidelberg (Germany), 1940
  • After studying chemistry in Berlin and Leipzig in 1899 he entered the chemical company BASF; in 1925 be became president of the trust IG-Farben industries. He solved all the technical problems connected with Fritz Haber´s synthesis of ammonia from air. He also did research on the production of nitric by burning ammonia and on nitrogen fertilisers, on the synthesis of methanol and the hydrogenation of carbon. As one of few technical chemists in 1931 he received to Nobel Prize for chemistry (together with Friedrich Bergius).
  • Brönsted, Johannes Nicolaus (1879-1947)
    Born: Varde, Jutland (Denmark), 22 February 1879 Died: Copenhagen (Denmark), 17 December 1947
  • Brønsted studied in Copenhagen at the Polytechnic Institute and University, obtained his doctorate in 1908 and was appointed the same year to a newly established professorship in chemistry with teaching courses at both universities. The double duties ended in 1930 when he was given a single professorship with the institute of physical chemistry at the University. Brønsted’s main achievement was the development of a valid concept of acids and bases in 1923, often referred to as the Brønsted theory of acids and bases. In Brønsted’s concept, every acid is related to a conjugate base and vice versa. The definition applies to all solvents and not just to water. He also studied activity coefficients introduced by G.N. Lewis and, together with the later Nobel laureate G. Hevesy, the separation of isotopes by molecular distillation. Since 1927 Brønsted became increasingly interested in catalytic effects of acids and bases.
  • Butenandt, Adolf Friedrich Johann (1903-1995)
    Born: Bremerhaven (Germany), 1903 Died: München (Germany), 1995
  • In 1931, shortly after he had isolated the hormone estrone independently of Edward Albert Doisy, Butenandt became lecturer in Göttingen. Later in 1933 he became professor in Danzig (Gdansk) and in 1936 director of the Max-Planck-Institute (KWI) for biochemistry in Berlin (later in Tübingen and München). At first his research concentrated on steroid hormones but after 1941 the active substances of insects and cancer were his main fields of interest. In 1939 he was awarded the Nobel Prize for chemistry (together with Leopold Ruzicka).
  • Curie, Marie (1867-1934)
    Born : Warsaw (Poland), 1867 Died : Haute Savoie (France), 1934
  • Marie Curie was an autodidact. In 1891 she went to Paris where she entered the Sorbonne. She married Pierre Curie in 1895, three years later Marie Curie and her husband isolated two new elements from uranium ore; polonium and radium. Marie Curie wrote her doctor’s dissertation in 1903 . Marie and Pierre Curie and Becquerel were jointly awarded the 1903 Nobel Prize for Physics for the discovery of radioactive radiations. After the death of her husband in 1906, Marie Curie took over his professorship at the Sorbonne becoming their frist female professor. In 1911 she was awarded the Nobel Prize for chemistry for the discovery of two new elements.
  • Debye, Peter Joseph Wilhelm (1884-1966)
    Born: Maastricht (The Netherlands), 1884 Died: Ithaca (USA), 1966
  • Debye studied at the University of Aachen and received a degree in electrical engineering in 1905. However, he turned to physics and received his Ph.D. at the University of München, working under Sommerfeld in 1910. He was professor at the universities of Zürich (1911-1912), Utrecht (1912-1914), Göttingen (1914-1920), Zürich (1920-1927), Leipzig (197-1934), Berlin (1934-1939) and the Cornell University in Ithaca (1940-1952). He did research on the dipole moments of molecules (1912) and he extended the work of the Braggs (1916). Most spectacularly he extended the work of Arrhenius on ionic dissociation in solution and worked out a mathematical theory of electrolytes (the so called Debye-Hückel theory). Debye received the 1936 Nobel Prize for chemistry for his work on dipolar moments.
  • Diels, Otto Paul Hermann (1876-1954)
    Born: Hamburg (Germany), 1876 Died: Kiel (Germany), 1954
  • Under the guidance of Emil Fischer, Diels became professor in Berlin in 1906, in 1916 he moved to Kiel. In 1906 he synthesised C3O2. In the course of the investigation of cholesterol he found the dehydrogenation with Selenium. In 1928 together with Kurt Alder he developed a method of preparing cyclic organic compounds (Diels-Alder reaction) and the pair were jointly awarded the 1950 Nobel Prize for chemistry.
  • Grignard, François Auguste Victor (1871-1935)
    Born: Cherbourg (France), 1871 Died: Lyon Rhône (France), 1935
  • Grignard obtained at the faculty of Lyon a licence in mathematics (1894). In the general chemistry laboratory of the Sciences Faculty in Lyon he was able to prepare the so called organomagnesium halides for the synthesis of new organic compounds. Grignard presented his work as his doctor’s thesis (1901). Grignard reagents were used in all directions. The usefulness of the device was such that in 1910 he received a professorship in chemistry at the University of Nancy and of Lyon in 1919. In 1912 Grignard shared the Nobel Prize with Sabatier.
  • Haber, Fritz (1868-1934)
    Born: Breslau (Germany), 1868 Died: Basel (Switzerland), 1934
  • After studying chemistry and spending some years as an industrial chemist, in 1898 he became professor in Karlsruhe, 1911 director of the Max-Planck-Institute (KWI) for physical and electrochemistry in Berlin. In 1908 he succeeded in synthesising ammonia in a small scale (Haber-Bosch-synthesis) which was the beginning of high pressure chemistry. Later he did research on gas spectra. During World War I he advocated the use of poison-gases as weapons. In 1933 he was forced to leave Germany because of his Jewish descent. In 1918 he was awarded the Nobel Prize for chemistry.
  • Hahn, Otto (1879-1968)
    Born: Frankfurt-am-Main (Germany), 1879 Died: Göttingen (Germany), 1968
  • Hahn studied chemistry in München under Baeyerand obtained his Ph.D. in 1901 at the University of Marburg. He did postdoctoral research with Ramsay (1904) and with Rutherford (1905). In1906 he returned to Germany and became professor in Berlin. In 1928 he became director of the Kaiser Wilhelm Institute in Berlin. From 1906 he studied (with L.Meitner) the radioactive breakdown of thorium. They discovered radioactive isotopes. By 1935 he started to study the bombardment of uranium with neutrons. In 1938 he was the first to realize and to discover the fission of uranium. He received the Nobel Prize for chemistry in 1944.
  • Hantzsch, Arthur Rudolf (1857-1935)
    Born: Dresden (Germany), 1857 Died Dresden (Germany), 1935
  • Hantzsch studied at the Technical High School in Dresden and obtained a Ph.D. in Würzburg under Wislecenus in 1880. He became professor organic chemistry at the Technical High School in Zürich (1885-1893), at the University of Würzburg (1893-1903) and the University of Leipzig (1903-1927). He studied stereochemistry. He synthesised pyridine (1882), cumaron (1886) and thiazol (1889) and he gave a nomenclature of heterocyclic compounds. From 1907 he studied cryoscopy and UV-spectroscopy.
  • Hassel, Odd (1897-1981)
    Born: Oslo (Norway), 17 May 1897 Died: Oslo (Norway), 11 May 1981
  • After graduating in 1920 from the University of Oslo, Hassel studied in France, Italy and Germany and received his Ph.D. degree from the University of Berlin in 1924. Next year he returned to the University of Oslo where he became, in 1934, the first professor of physical chemistry in Norway. Hassel retired from this post after 30 years of service in 1964. Hassel was one of the early pioneers in the study of molecular structures and laid down the foundations for conformational analysis. Through measurements of electric dipole moments and gas phase electron diffraction he was able to establish the conformations of several alicyclic hydrocarbons, for instance, those of cyclohexane. Hassel received together with D.H.R. Barton the 1969 Nobel prize in chemistry for the development of the concept of conformation and its application in chemistry.
  • Haworth, Walter Norman (1883-1950)
    Born : Chorley (England), 1883 Died : Birmingham (England), 1950
  • Haworth studied chemistry at the University of Manchester, where he was a student of W.H.Perkin, Jr. A scholarly award enabled him to spend a year in Göttingen, where he received his Ph.D. under O. Wallach (1910). After several appointments at universities, he went to the University of Birmingham (1925). Much of his work was done on the structure of carbohydrates. He devised a form of representing the sugar molecules in what is still called “Haworth formulas”. He received in 1937 the Nobel Prize for his work on carbohydrates and vitamin C. He shared the Prize with P. Karrer
  • Hevesy, Gÿorgy Charles (1885-1966)
    Born: Budapest (Hungary), 1885 Died: Freiburg-im-Breisgau (Germany), 1966
  • Hevesy was educated in Hungary and in Germany. He received his Ph.D. at the University of Freiburg (1908). He studied under Haber, Rutherford and Bohr. He became professor in Freiburg (1926), Copenhagen (1934) and Stockholm (1943). In 1923 Hevesy, together with Coster, isolated a new element : hafnium. His most important work was about the use of radioactive isotopes as tracers for the study of metabolic pathways. In 1943 he was awarded the Nobel Prize for chemistry.
  • Heyrovský, Jaroslav (1890-1967)
    Born: Prague (Austria-Hungary, now Czech Republic), 1890 Died: Prague (Czech Republic), 1967
  • Heyrovsky received a BSc. degree from the University College, London (1913) and a Ph.D. from the Charles University in Prague (1918). Professor of physical chemistry at the Charles University of Prague (1924), Heyrovsky’s fame is due to his invention of polarography and his development of the technique into a major method for chemical analysis. For these accomplishment he received the Nobel Prize in 1959.
  • Hinshelwood, Cyril Norman (1897-1967)
    Born: London (England), 1897 Died: London (England), 1967
  • Hinshelwood spent his professional life at Oxford (England), where he obtained a doctorate (1924) and a professorship of chemistry (1937). He served as president of the Chemical Society (1955-1960). He is noted for his extensive contributions to the theoretical and experimental development of chemical kinetics. He elucidated the complex reaction system that contributes to the mechanism of explosive mixtures of hydrogen and oxygen. This work earned him, jointly with N. Semënov the Nobel Prize in 1956.
  • Hodgkin, Dorothy Mary (1910-1994)
    Born: Cairo (Egypt), 1910 Died: Warwickshire (England), 1994
  • Hodgkin studied at the Somerville College, Oxford. She was fascinated by the complex organic structures. As Bernal’s assistant she became a crystallographer and obtained her Ph.D. in Cambridge (1937). She worked on the determination of different important compounds: pepsin, sterols, insulin, penicillin and vitamin B12. Hodgkin’s work was unique not just for its technical brilliance or its medical importance, but because, at every step she used computing machines of various degrees of sophistication. It was for the work on penicillin and vitamin B12 that she won the Nobel Prize in 1964.
  • Ingold, Christopher Kelk (1893-1970)
    Born: London (England), 1893 Died: Edgware (England), 1970
  • Ingold began scientific studies at the Hartley University, Southampton and entered in 1913 the Imperial College. Here he was lecturer in organic chemistry (1921). He was appointed at the Leeds University and in 1930 at the University College, London. He made contributions to the concept of resonance and mesomerism, the prediction of reactions by his schema of substitution and elimination mechanisms and several aspects of physical chemistry (measurements of dipole moments, kinetics, molecular spectroscopy). Ingold created a new discipline: physical organic chemistry. He introduced a fundamental reform of chemical theory and chemical language.
  • Karrer, Paul (1889-1971)
    Born: Moscow (Russia), 1889 Died: Zürich (Switzerland), 1971
  • Karrer studied chemistry in Zürich under Alfred Werner, then he became a collaborator of Paul Ehrlich in Frankfurt. He became professor in Zürich in 1919. He investigated the constitution of carotinoids, flavins, and vitamins E, B2, and A (1930 correct formula of carotine, 1931 of vitamin A). In 1937 he was awarded the Nobel Prize for chemistry together with Walter Haworth.
  • Kendrew, John Cowdery (1917-1997)
    Born: Oxford (England), 1917 Died: 1997
  • Kendrew was educated at the Cambridge University where he obtained his Ph.D. (1949). After receiving his doctorate he shifted his attention to myoglobin. This study complemented Perutz’s work on haemoglobin. In 1962 the Nobel Prize was shared by Kendrew and Perutz. By founding in 1959 the Journal of Molecular Biology Kendrew can be seen as one of the pioneers of this new scientific discipline.
  • Natta, Giulio (1903-1979)
    Born: Imperia near Genoa (Italy), 1903 Died: Bergamo (Italy), 1979
  • After studying chemistry in Milano and Freiburg Natta became professor in Pavia, Rome, Turin, and Milano. He investigated catalytic reactions like the synthesis of methanol, of formaldehyde from methanol and of butyraldehyde from propylene, which were used on an industrial scale. He also worked on synthetic rubber and on the polymerisation of olefins with organometallic catalysts developed by Karl Ziegler by which he obtained polypropylenes of highly regular molecular structure. In 1963 he was awarded the Nobel Prize in chemistry (together with Karl Ziegler).
  • Nernst, Walther Hermann (1864-1941)
    Born: Briesen near Thorn (Torun) (Germany), 1864 Died: Ober-Zibelle near Bautzen (Germany), 1941
  • In 1883 Nernst became assistant of Wilhelm Ostwald in Leipzig, 1891 professor in Göttingen, 1905 in Berlin. He succeeded in explaining the phenomena connected with galvanic elements (Nernst´s equations 1889) and calculated the moveability of ions (Ionenbeweglichkeit) and the coefficient of diffusion. He was honoured with the Nobel Prize for 1920.

  • Noddack, Ida Eva (1896-1978)
    Born: Lackhausen near Wesel (Germany), 1896 Died: Bad Neuenahr (Germany), 1978
  • After studying chemistry in Berlin she worked in a company and, together with her husband Walter Noddack, at a state institution for the control of physical and chemical measurements (Physiklisch-Technische Reichsanstalt). After she carried out research at the universities of Freiburg and Strasbourg and at an institution for geochemistry in Bamberg. After a long investigation in 1925 the couple succeeded in discovering the element Rhenium by X-ray spectroscopy, by 1929 they had isolated the new element. Further research aimed at determining the frequency and distribution of the elements in the earth’s crust.
  • Pregl, Fritz (1869-1930)
    Born: Laibach (now Slovenia), 1869 Died: Graz (Austria), 1930
  • Pregl studied medicine at the University of Graz, receiving his M.D. in 1894. He developed different microanalytical techniques for the determination of hydrogen, carbon, nitrogen, halogens, sulphur and functional groups in organic compounds. Pregl was highly skilled in the design and construction of apparatus for microanalytical research and in 1923 he was awarded the Nobel prize for his microchemical feats.
  • Prelog, Vladimir (1906-1998)
    Born: Sarajevo (now Bosnia-Herzegovina), 1906 Died: 1998
  • Prelog was educated in Prague. There he received his diploma in chemical engineering (1928) and his doctorate (1929). After his professorship at the University of Zagreb (1935-1941) he emigrated to Switzerland, were he was appointed professor at the Swiss Federal Institute of Technology (ETH). Natural products became one of the two main interests of his career, the other being stereochemistry. For this research he was awarded a share of the Nobel Prize for 1975.
  • Reppe, Walter Julius (1892-1969)
    Born: Göringen near Eisenach (Germany), 1892 Died: Heidelberg (Germany), 1969
  • After studying in Jena and München in 1921 Reppe joined the main laboratory of the chemical company BASF. In 1928 he started research on acetylene reactions under high pressure (‘Reppe chemistry’). He studied the vinylisation of alcohols, carboxylic acids and nitrogen compounds and developed the technical means for all theses processes. He also found a process for the catalytic hydration of acetaldehyde.
  • Robinson, Robert (1886-1975)
    Born: Bufford (England), 1886 Died: London (England), 1975
  • Robinson was educated in chemistry at the University of Manchester and under W.H.Perkin Jr. he produced his doctoral thesis in 1909. After a professorship at the University of Sydney (Australia), he returned to England in 1915 and taught at a number of universities. He worked on various aspects of alkaloid chemistry and worked out the structures of morphine (1925) and strychnine (1946). For this work he received the Nobel Prize in 1947. Robinson served as president of the Royal Society from 1945-1950
  • Rutherford, Ernest (1871-1937)
    Born: Brightwater (New Zealand), 1871 Died: London (England), 1937
  • Rutherford studied physics in New Zealand then in 1895 he received a scholarship for the Cambridge University were he worked under J.J.Thomson. He succeeded Thomson in 1919 as professor. Rutherford began research in the exciting new field of radioactivity and discovered gamma radiation. He proved that alpha particles were helium atoms without electrons and he introduced the notion of the proton as a fundamental positively charged particle. In 1911 Rutherford evolved the theory of the atom as having a very tiny nucleus, positively charged, in its centre with negatively charged electrons in outer regions. For these contributions Rutherford was awarded the Nobel Prize for chemistry in 1908. In 1919 he produced the first man-made “nuclear reaction” changing nitrogen into oxygen.
  • Ruzicka, Leopold Stephen (1887-1976)
    Born: Vukovar (now Croatia), 1887 Died: Mammern (Switzerland), 1976
  • Ruzicka studied chemistry at the Technical University of Karlsruhe (Germany), where he received his doctorate under H. Staudinger (1910). After a professorship in Utrecht (The Netherlands) (1927-1929) he became professor of chemistry at the Swiss Federal Institut for Technology (ETH). His main work started in 1921. It involved: macrocyclic compounds, higher terpenes and steroids. He shared the Nobel Prize with Butenandt in 1939. His “biogenetic isoprene rule”, which was pioneered by Wallach, became, in 1953, the crowning of his life.
  • Sabatier, Paul (1854-1941)
    Born: Carcassonne (France), 1854 Died: Toulouse (France), 1941
  • In 1880 Sabatier completed a doctoral thesis on the thermochemistry of sulphides in Berthelot’s laboratory. In 1892 he started studying catalytic hydrogenations which was of utmost importance to many modern industrial procedures. For this work he received the Nobel Prize in 1912, sharing it with Grignard
  • Semenov, Nikolay Nikolaevich (1896-1986)
    Born: Saratov (Russia), 1896 Died: (Russia), 1986
  • Semenov was educated at the University of St. Petersburg where he graduated in 1917. During the 1920’s he worked on chain reaction mechanisms and on the theory of thermal explosions. For this work he was awarded the Nobel Prize in 1956 jointly with Hinshelwood.
  • Soddy, Frederick (1877-1956)
    Born: Eastbourne (Great Britain), 1877 Died: Brighton (Great Britain), 1956
  • Soddy studied chemistry in Oxford and graduated in 1898. He worked under Rutherford. Soddy studied the different consecutive radioactive breakdowns beginning with uranium and thorium. In the process of disintegration some forty to fifty different elements were detected. Soddy suggested that different elements were capable of occupying the same place in the periodic table. In 1913 he called these elements isotopes. Furthermore he could explain all radioactive intermediates and that lead was the final stable element. For these results Soddy was awarded the Nobel Prize for chemistry in 1921. He was professor of chemistry in Oxford from 1919-1936.
  • Sörensen, Soren Peter Lauritz (1868-1939)
    Born: Haurebjerg near Slagelse (Denmark), 9 January 1868 Died: Copenhagen (Denmark), 12 February 1939
  • Sørensen first began to study medicine at the University of Copenhagen but soon moved to chemistry where he obtained his Ph.D. in 1899 working under S.M. Jørgensen on inorganic syntheses. Sørensen became director of the chemical section of Carlsberg Laboratories in 1901 and retired from this post in 1938. While at the Carlsberg Laboratories, Sørensen started to study amino acids, proteins and enzymes. Because hydrogen ion concentration played a key role in enzymatic reactions he devised a simple way of expressing it. By taking a negative logarithm of hydrogen ion concentration a convenient scale can be established; this is the well-known pH value. He also developed buffer solutions to maintain constant pH of solutions (Sørensen buffers).
  • Staudinger, Hermann (1881-1965)
    Born: Worms (Germany), 1881 Died: Freiburg (Germany), 1965
  • After studying in Halle, Darmstadt and München, Staudinger became an assistant in Straßburg (Strasbourg) in 1903 where he discovered the ketenes. In 1907 he became professor in Karlsruhe, 1912 in Zürich and 1926 in Freiburg. From 1912 he studied compounds like cellulose and caoutchouc starting from the hypothesis that those compounds have an extremely high molecular weight. He also showed the relation between viscosity and the chain length of macromolecules. His results were further developed by the plastic industry. Together with his wife Magda Staudinger-Woit he also studied the molecular composition of proteins. Having long been considered an outsider in 1953 he was honoured with the Nobel Prize in chemistry.
  • Stock, Alfred (1876-1946)
    Born: Danzig (Gdansk) (Germany), 1876 Died: Aken near Dessau (Germany), 1946
  • Stock studied under Emil Fischer and Henri Moissan. In 1906 he became professor in Berlin, in 1907 in Breslau (Wroclaw), in 1916 in Berlin (from 1921 director of the Max-Planck-Institute (KWI) for chemistry in Berlin) and in 1926 in Karlsruhe. At first he worked on hydrogen compounds of phosphorous, arsenic, and antimony, then on boron hydrates and silicium hydrates (synthesis of siloxanes). He also introduced new apparatus and methods into inorganic chemistry.
  • Svedberg, Theodor H.E. (1884-1971)
    Born: Fleräng near Valbo (Sweden), 30 August 1884 Died: Kopparberg near Örebro (Sweden), 24 February 1971
  • Svedberg studied at the University of Uppsala and obtained his doctorate in 1907 becoming professor in 1912. With the exception of research periods in Göttingen and Wisconsin, Svedberg remained loyal to his Alma Mater, heading the Institute of Physical Chemistry of the University of Uppsala until retirement in 1949. Svedberg was chiefly interested in the chemistry of colloids and in 1923 developed the ultracentrifuge to settle the tiny colloid particles according to their molecular weights. With an improved version of the centrifuge in 1933-34 gravitational fields of more than half a million g could be achieved. Based on experiments with the ultracentrifuge Svedberg calculated in 1924 the molecular weight of milk casein and next year that of haemoglobin. In 1926 the Nobel prize in chemistry was awarded to Svedberg for his development of the ultracentrifuge.
  • Todd, Alexander Robertus (1907-1997)
    Born: Glasgow (Scotland), 1907 Died 1997
  • Todd graduated from the University of Glasgow (1929) and obtained a doctorate in Frankfurt (Germany) (1931) and a second doctorate (1933) at Oxford (England). In 1947 he synthesised the compounds adenosine diphosphate and triphosphate (ADP and ATP). In the 1950’s he synthesised several coenzymes with nucleotide-like structure. Todd was awarded the Nobel Prize in 1957 for his work on nucleotides.
  • Tswet, Michail Semënovic (1872-1919)
    Born: Asti (Italy), 1872 Died : Voronezh (Russia), 1919
  • Tswett studied at the Geneva University in Switzerland and in 1896 went to St. Petersburg (Russia) to do research. His major work was on plant pigments and he is the founder of chromatographical separation techniques. His report in Russian was forgotten until the method was reintroduced in 1906 by Willstätter
  • Wilkinson, Geoffrey (1921-1998)
    Born: Todmorden (England), 1921 Died: England, 1998
  • Wilkinson received his Ph.D. from the Imperial College (England) in 1946. He was working in the USA on nuclear chemistry (1946-1950). Whilst at the Harvard University he grew interested in ferrocene. Wilkinson returned to England in 1956 and while at the Imperial College he made remarkable contributions to organometallic chemistry. His work led to the development of versatile homogeneous catalysts for the hydrogenation of many olefins. In 1973 Wilkinson shared the Nobel Prize with E. O. Fischer
  • Willstätter, Richard Martin (1872-1942)
    Born: Karlsruhe (Germany), 1872 Died: Muralto (Switzerland), 1942
  • Willstätter studied under Adolf v. Baeyer in München. In 1905 he became professor in Zürich and in 1912 joined the Max-Planck-Institute (KWI) for chemistry in Berlin. He became professor in München in 1916 and then in 1939 he emigrated to Switzerland. Willstätter clarified the constitution of cocaine in 1898 and in 1913 the constitution of chlorophyll. He also investigated anthocyanes. In 1915 he received the Nobel Prize for chemistry. In the 1920s Willstätter studied enzymes.
  • Wittig, Georg Friedrich Karl (1897-1987)
    Born: Berlin (Germany), 1897 Died: Heidelberg (Germany), 1987
  • Wittig studied in Tübingen and Marburg. In 1932 he became professor in Braunschweig, in 1937 in Freiburg, in 1944 in Tübingen, in 1956 in Heidelberg. He did research on the stability and the reactions of organic radicals and on the course of those reactions in unsaturated systems. Starting from lithiumphenyl he synthesised ylides. In connection with those investigations he introduced compounds of boron and phosphorous into organic synthesis. In 1979 together with Herbert C. Brown he was awarded the Nobel Prize.
  • Ziegler, Karl (1898-1973)
    Born: Kassel (Germany), 1898 Died: Mühlheim-Ruhr (Germany), 1973
  • Ziegler obtained a doctorate in chemistry at the University of Marburg (1920). He was professor at different universities and in 1943 he became director of the Max Planck Institute in Mülheim. In 1952 he made the discovery of the unique catalytic system enabling low-pressure polymerisation of ethylene to give linear polyethylene of high molecular weight. For this work he shared the Nobel Prize in 1962 with Giulio Natto
  • Zsigmondy, Richard Adolf (1865-1929)
    Born: Wien (Austria), 1865 Died: Göttingen (Germany), 1929
  • Zsigmondy studied in Wien, München, Berlin, and Graz. He then joined a glassworks in Jena, and in 1907 he became professor in Göttingen. Zigmondy investigated glasses in the context of colloid chemistry. He recognised the resistance of hydrophilic colloids against electrolytical coagulation (protective colloids : Schutzkolloide). In 1903 together with Henry Siedentopf he developed the ultramicroscope. From 1918 he did research on ultrafiltration to determine the size of colloid particles. In 1925 he was award the Nobel Prize in chemistry.