The use of alternative fuels as a key strategy to address the European Green Deal

> Professor Nicolas Moussiopoulos Aristotle University Thessaloniki

The Paris Agreement's long-term goal on global GHG emissions

IEA forecast for the global energy consumption

AUT/LHTEE

Global emissions abatement by technology in the 66% 2°C scenario relative to the New Policies Scenario

Source: IEA, 2017

Methanol Economy and soil improvement for closing the carbon cycle

Association Foundation Aug. 27, 2020

Honorary Doctorate conferment on **Professor Radermacher**, Nov. 8, 2013

Methanol Economy principle

- Solar energy drives electrolysis to separate 2H₂ + O₂
- H₂ and CO₂ make methanol (CH₃-OH)
- That can be burnt in industry or vehicles releasing CO₂
- The process includes large scale CO₂ recycling.

Source: Ernst Ulrich von Weizsäcker - Honorary President of the Club of Rome , Brutally short summary of Franz Josef Radermacher's proposal for a "Methanol Economy" or "Desertec 2.0", 2019

Carbon Cycle energy today

air

Power plants, heavy industry, chemicals, mobility sector, heating, ...

energetic utilization, e.g. power plants, heavy industry, ... approximately 35 billion tons $\rm CO_2$ per year are released into the atmosphere

13 billion tons carbon

extraction of around 13 billion tons of coal, oil and gas per year fossil energy sources

soil

today's soils are an additional source of CO_2 emissions

Closed Carbon Cycle energy future

Industry sectors connected to fossil fuels (e.g. power plants, heavy industry) preserved/transformed within their current economic magnitude. Industries based on two pillars: primary (fossil fuels) & secondary (methanol economy)

7.5 billion people global GDP 80 trillion €High inequality, especially between countries

Composition of primary energy consumption:

Energy situation 2050

(according to reference scenario)

10 billion people (peak of the global population growth?!) Global GDP 140 trillion €

Distinctly more and more equal prosperity in developing and emerging countries / implementation of the SDGs

Composition of primary energy consumption:

Basic global roadmap scheme

Cost structure

If electricity is available for 2 Cent/kWh with the process of electrolysis, the following cost for synthetic fuels (including taxes) result:

- 1. Cost of green hydrogen
- 2. Cost of green methanol (Europe)
- 3. Cost of green methanol (Africa)
- 4. Cost of green methanol when used as fuel
- 5. Cost of green methanol-gasoline
- 6. Cost of green methanol-diesel
- 7. Cost of green methanol-kerosene

- 1 Euro per kilo
- 350 Euro per ton
- 250 Euro per ton
 - 1 1.20 Euro per double litre, incl. VAT
 - 1.70 1.90 Euro per litre
 - 1.80 Euro per litre
 - 1 Euro

Lazard's cost of energy analysis (October 18, 2020)

29 US\$ per MWh ~ 2,4 Euro cents per kWh

Trends of wind and solar energy costs

Potential benefits of suggested approach

- Achieve CO₂-neutrality (via "carbon recycling")
- Maintain rainforests (financed by developed countries)
- Soils to be kept in good order (carbon storage)
- Produce food for all mankind (reverse desertification)
- Marshall plan for Africa (create there 20 million jobs p.a.)
- Avoid two-tier society in Europe (less migration)
- Reduce global inequity (development of poor areas)
- Stabilise world population to 10 billion
- Help industry survive (especially conventional energy)
- Reduce the probability of world economic crises
- Avoid economical stifling of individual countries
- Prevent international tensions

hing

Contribute to achieving all SDGs

Thank you for your attention!

Engineering for Sustainability - Challenges for the Future

30 years Laboratory of Heat Transfer and Environmental Engineering

1990 - 2020

moussio@auth.gr

