

# Urban Mining and the recycling of E-Waste



Dr. Christian Hagelüken Webinar, 5 Nov. 2020





## Umicore Global material technology- & recycling group

~ 11150 people, 50 production sites & 15 R&D technical centers, 3,4 bn € revenues\*





# Urban mining "deposits" - much richer than primary ores

- Primary mining
  - << 5 g/t Au in ore
  - Similar for PGMs

- "Urban mining"
  - 100-150 g/t Au; Pd, Ag, Cu, Sn, Sb, ... in PC motherboards
  - 200-300 g/t Au; Pd ... in cell phones



How to accumulate millions of discarded EoL product into "urban mines" of a reasonable (= economically viable) size?



# Effective collection crucial for economic viability

Responsible recycling to cope with hazards while recovering value



- Metal value of 1 smart phone: ~ 1,1 €
- Net value of 5 t of phones at gate of Umicore recycling plant: up to 50,000 €
- Metal value of 1.8 B mobile phones sold globally in 2019: ~ 2 B €

 $\Rightarrow$  E-scrap / mobile phones, a complex mix ...

- Ag, Au, Pd... (precious metals)
- Cu, Al, Ni, Sn, Fe, Bi, Sb, In... (base & special metals)
- Hg, Be, Pb, Cd, As, ...(hazardous substances)
- Halogens (Br, F, Cl...)
- Plastics & other organic materials
- Glass, ceramics, wood, ...
- ⇒ Environmental risk in case of landfill/bad recycling
   ⇒ Important source for raw materials (incl. CRM)





# Effective recycling requires optimised chains



#### Main recycling drivers:

Economic value, business models & legislation (if well enforced)

#### Main challenges:

- Insufficient collection, illegal waste exports, sub-standard treatment
   ⇒ high metal losses & environmental damage
- Reported "Recycling rates" are rather collection rates, don't reflect the physical truth



## Metallurgical end-processing – example Umicore Economies of scale & sophisticated processes needed for multi-metals recycling



Umicore's integrated precious metals refining plant in Hoboken, Belgium



- Efficient recovery of 17 metals in main process: Au, Ag, Pt, Pd, Rh, Ru, Ir, Cu, Pb, Ni, Sn, Bi, Se, Te, In, Sb, As
- Treatment of e-scrap fractions, catalysts, ..., industrial wastes, smelter residues, complex mining concentrates, ...
- Up to 500,000 t/y materials input, global sources
- In addition, specialized process for recycling of Li-Ion batteries recovering Co, Ni, Cu, Li
- Unique technology, high metal yields, energy efficiency & EHS-standards

EoL materials need to reach such plants!



# Still significant efforts needed to become circular if we strive to close the <u>physical</u> loops for (electronic) products

- True CE requires a fundamental change in the way we develop, design, use and recycle products that have a high relevance for (critical) raw materials.
- Both, recycling and lifetime extension/use optimisation need to be addressed in the CE strategy.
- Companies have to adapt their business models accordingly. New forms of stakeholder collaboration ("roundstream" instead of up-/downstream) and product service models can be the game changer ("business as <u>un</u>usual").
- Incentives & appropriate legal frame conditions needed to secure comprehensive collection <u>and</u> high quality recycling.
- Special focus on CE strategies is required for electronics and green products as they
  increase the demand for (critical) raw materials and need to be inherently
  sustainable by definition.



### Thanks for your attention

Performance Conflict-Free Precious Solution Science Innovation Enablers Closed-Loop Batteries Pioneers People High-tech Critical Materials Sustainable Energy Circular Economy Catalysts Resources Efficiency Life Air Safety Safety Vehicles Policy Quality Re rch Collection Re-use water Environment Value Research Process Transparency Hybrids Partnership Metals Technology Awareness Metallurgy Metals Technology E-waste Teamwork Cooperation Procurement



contact: christian.hagelueken@eu.umicore.com

Publications: www.researchgate.net/profile/Christian\_Hagelueken/contributions

www.umicore.com



# **Overall recycling success factors**



#### **Prerequisites:**

- 1. Technical recyclability as basic requirement
- 2. Accessibility of relevant components  $\rightarrow$  product design
- 3. Economic viability intrinsically or externally created
- 4. Comprehensive collection
- 5. Transparency of real flows
- 6. Use of best performing recycling infrastructure
- 7. Optimal technicalorganisational set-up of chain

Complex products require a systemic optimisation & interdisciplinary approaches (product development, process engineering, metallurgy, ecology, social & economic sciences)



<u>Physical</u>: Reapply recycled materials into new products
 → EHS-compliant, multi-material recovery from <u>complex products</u>
 → focus on quality & performance of <u>applied</u> recycling processes



- $\rightarrow$  special <u>challenge</u> for high quality <u>recycling of critical materials from complex</u> consumer <u>products</u>  $\rightarrow$  close economic gap if needed, generate adequate <u>recycling drivers</u> (fees, business models, ...)
- > Not "any" recycling operations but only high quality processes fit for a Circular Economy

**Circular economy** in a global business environment:  $\rightarrow$  reuse & recover materials <u>comprehensively</u> at product EoL, <u>when ever & where ever</u> this will be







## Current barriers to closing the loop

Lifecycle is disconnected @ consumer  $\rightarrow$  2 independent value chains in B2C



- Focus on direct customer/supplier interfaces, missing system approach & overarching collaboration
- No real incentives for OEMs for durable, well repairable & recyclable products
- Processes, tools and financial systems in companies are tailored to linear business
- Little knowledge (and interest) on "fate" of products after it's distribution
- @ EoL: Too much focus on costs/prices too little on recycling quality
- Current EPR systems do not reward comprehensive and good recycling
- OEM focus is more on legal compliance and image (CSR, responsible sourcing, recycled content, ...), so far less on genuine circular business models



# Recycling economics – what's the right price for "waste"?



\*legislation, business model to cover externalised costs

- Complex waste (mix of valuables & pollutants): "externalisation" of EHS-costs enables high waste prices
- Cost savings of non-compliant/low quality processes often outweigh costs for waste exports
- Administrative burden & time delays for transboundary hamper waste shipments to high quality recyclers
- → The lack of level playing field for EHS-compliant, quality recyclers hampers the circular economy