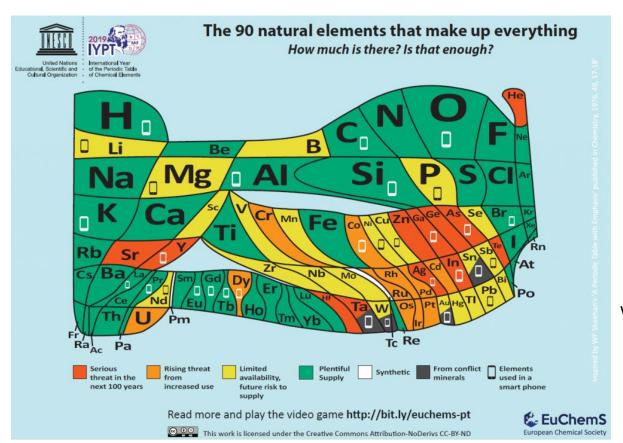
CRITICAL ELEMENTS AND THE TRANSITION TO ELECTRIC MOBILITY

Nicola Armaroli

CNR – Consiglio Nazionale delle Ricerche nicola.armaroli@cnr.it — www.isof.cnr.it/armaroli-nicola



The Value is on Circularity

Recycling-Reusing-Reinvesting on Critical Raw Materials

European Parliament, November 5th, 2020

CRITICAL ELEMENTS: THE EUCHEMS PERIODIC TABLE

Available in 35 languages!

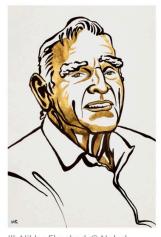
www.euchems.eu/euchems-periodic-table/

THE EPIC BATTLE of CAR TECHNOLOGIES OF THE EARLY 20TH CENTURY

Electric, 1906

Steam, 1908

Int. Comb. Engine (ICE) 1926


The electric vehicle (EV) virtually disappeared for almost a century

Then the key enabling technology was invented

The Nobel Prize in Chemistry 2019

III. Niklas Elmehed. © Nobel Media

John B. Goodenough Prize share: 1/3

III. Niklas Elmehed. © Nobel Media.

M. Stanley Whittingham

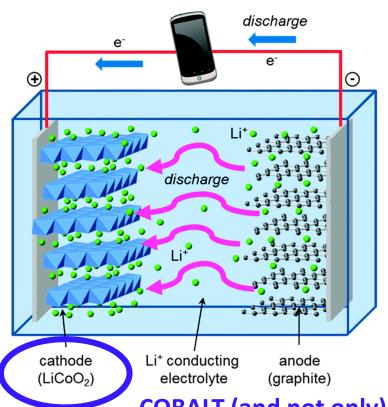
Prize share: 1/3

III. Niklas Elmehed. © Nobel Media

Akira Yoshino

Prize share: 1/3

"For the development of Lithium Ion Batteries"


(LIB's)

LIBs made possible to make cars with comparable SIZE, WEIGHT and **PERFORMANCE** of ICF

WHY LITHIUM?

The LIGHTEST and SMALLEST metal with one of the highest electrochemical potentials

High energy density

High charging speed

Long duration

PERFECT FOR BATTERIES

HOW DOES THE BATTERY LOOK LIKE? MY CAR

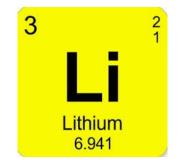
24 MODULES WITH 8 CELLS: 296 CELLS

Battery Capacity: 40 kWh

Battery Weight: 208 kg

ESTIMATED MATERIAL CONTENT OF MY BATTERY


- 10 kg Li (cathode, electrolyte)
- 25 kg Ni (cathode)
- 8 kg Mn (cathode)
- 9 kg Co (cathode)
- 48 kg Graphite (anode)


~ 100 kg

LITHIUM

LITHIUM

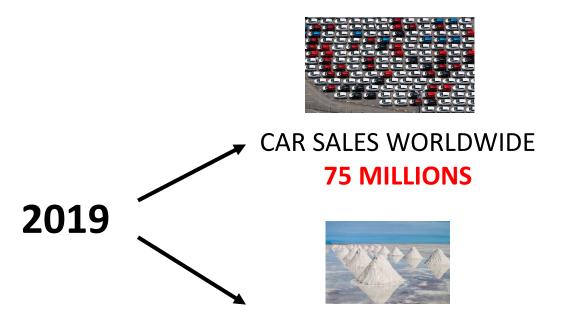
Major producers: Australia, Chile, Argentina

RESERVES: 17.0 Mton; **RESOURCES** > 80 Mton

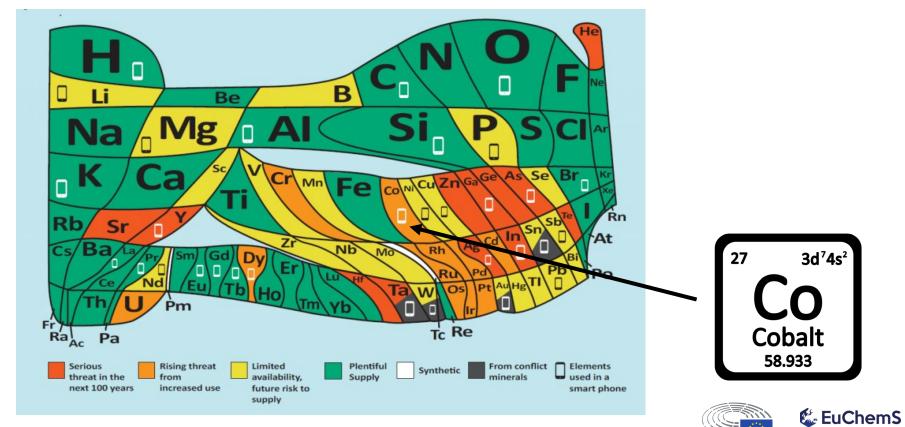
The world's largest resource

Salar de Uyuni, Bolivia - 10,000 km²

(comparison: Greater London is 1580 km²)



CAR SALES VS. LITHIUM EXTRACTED


LITHIUM MINED
77 kton

PRODUCTION
CAN SUPPORT
ABOUT
10% OF GLOBAL
ANNUAL CAR SALES

COBALT

European Chemical Society

THE COBALT PROBLEM

>60% supply based in one country, D.R. Congo, where labor exploitation may occur in small mines

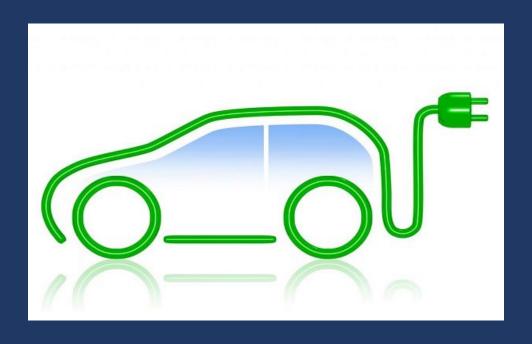
100% refining in China

Cobalt being reduced in LIBs cathodes typically replaced by Nickel

RECYCLING ISSUES OF LIB'S

- **SEVERAL METHODS are implemented** (hydrometallurgical, pyrometallurgical, "direct recycling") each of them with pros and cons

- LIBs occur in **different forms and size**, with different materials inside



- LIBs are designed for performance and duration, not recycling
- Only some parts of them are economically attractive (Co but not Li)

WHY MUST WE ELECTRIFY TRANSPORTATION?

A CLOSED SYSTEM POWERED BY RENEWABLES

An EV does NOT exchange any matter

IT ONLY NEEDS ELECTRICITY,
WHICH CAN BE 100% RENEWABLE

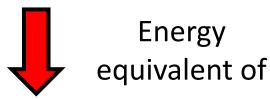
YOU CAN CHOOSE YOUR SUPPLIER

MY OLD DIESEL CAR: AN OPEN SYSTEM

14 YEARS 200 000 Km

Diesel fuel burnt
11.1 ton
(7 times its weight)

CO₂ emitted
33.5 ton
(21 times its weight)



An EV is 3-4 times more efficient than I.C.E. car

4 LITERS OF PETROL

Driving range: 280 km

EV: the "70 km/l" car ALREADY EXISTS

WHAT ABOUT ELECTRICITY CONSUMPTION?*

In Europe: **292 million cars**

Average mileage: 12000 km/y

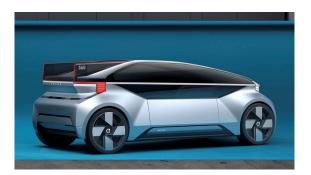
If electric they'd consume: 630 TWh/y

EU, 2018
896 TWh from RENEWABLES
(32% of total production)

* Data from EUROSTAT

WARNING: EV IS ONLY PART OF THE SOLUTION

PUBLIC TRANSPORT


CAR SHARING

RAILWAYS

AUTONOMOUS DRIVE

WORK FOR legislatorS

- A **regulatory framing on the supply** of Li, Co and other critical elements to prevent environmental degradation and human exploitation
- Strict rules on second-life use and end-of-life recycling of EV LIBs
- Support the growth of a EU-based battery industry
- Redirect subsidies away from fossil fuels to renewable energies
- Promote the **development of public transportation and bike** use in urban areas

THE BIG EUROPEAN PARADOX

We enjoy the best quality of life on Earth **BUT** our enviable prosperity is based on **energy and mineral resources coming FROM OTHER CONTINENTS**

IT IS OUR UTMOST INTEREST

- 1- A peaceful world where fair trade of critical materials is implemented
 - 2- A knowledge-based society that makes circular economy a reality

THANK YOU FOR YOUR ATTENTION

