

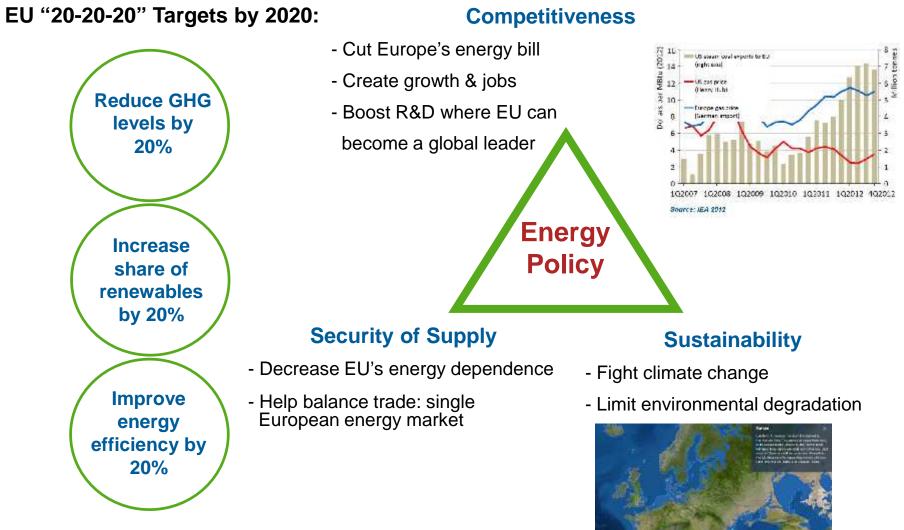
Advanced Materials for Energy Storage

Meeting co-organised by STOA & EuCheMS

THE ENERGY STORAGE CHALLENGE February 11th 2014 – European Parliament - Brussels

Dr Fabrice Stassin Manager EU Government Affairs – Umicore Managing Director - EMIRI (fabrice.stassin@emiri.eu) Energy Materials Industrial Research Initiative

Umicore in a nutshell


- We are a global materials technology company (14.600 people, 79 sites, > 50% sales in Europe, Turnover 2012 @ 12.5 B€ or 2.4 B€ excl. metal value)
- Our mission is to make
 "materials for a better life"
 (from metals to high-tech applications)
- The majority of our growth comes from clean technologies
- We use application know-how to create tailor-made solutions in close collaboration with our customers
- We close the loop and secure supply by recycling production scrap and end-of-life materials

EU faces strong energy challenges and has set ambitious goals and priorities

By 2050: Reduce GHG levels by 80-95% below 1990 levels STOA – EUCHEMS Meeting – February 11th 2014

In a BAU scenario, the power sector would be accountable for ~ 30% of GHG emissions

Business-as-usual emissions split by sector in 2005 and 2030

GtCO₂e per year Annual growth, 2005-2030 Percent 1.7 **P** 1 69.9 Power 18.7 X Power 27% 2.2 3.5 Petroleum and gas 45.9 3.5 Cement Industry 4.7 Iron and steel 10.9 26% X 3.7 Chemicals 3.0 2.6 Other Industry 1.6 2.1 F 1.63 11.4 Transport 2.3 Consumer related sectors 62 11 0.9 25% Buildings 4.6 3.5 1.7 -Waste X =1.4= 72 Forestry Land use related sectors 74 22% СЛ 1.0 7.9 Agriculture 62 2005 2030

Source: Houghton; IEA; IPCC; UNFCCC; US EPA; Global GHG Abatement Cost Curve v2.0

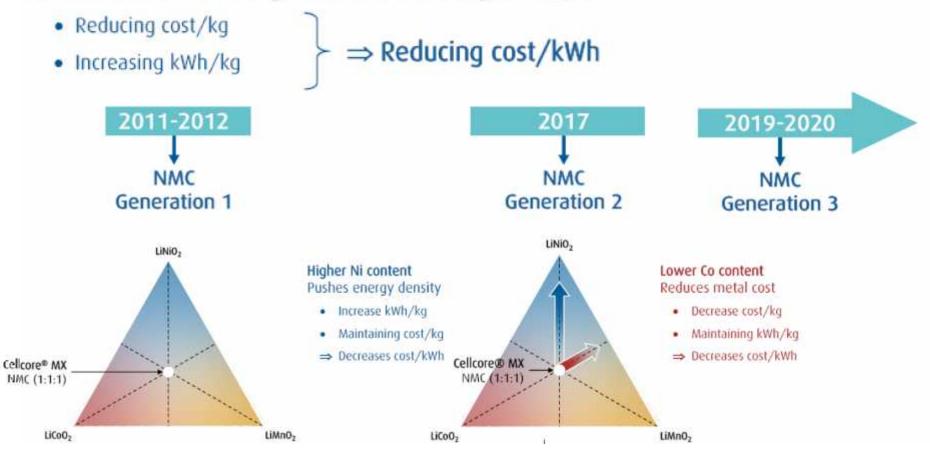
Reducing CO2 emissions relies upon innovations in energy efficiency, sustainable energy harvesting & storage

Advanced Materials facilitate deployment of sustainable energy technologies *Umicore helps with its innovations*

Energy Storage using Li-ion batteries could enable a EU value chain while solving sustainability challenges

- Large storage potential forecasted (BCG 2013) with EU stronger than Japan, China and ROW
- Batteries 2 times more than Hydrogen & together >80% of the market (2020+)

(2020+)			anode			
· · · ·	Energy	Power	Safety*	Life	Cost	tepara cathod
LCO lithium cobaltite LiCoO ₂	+++	+++	-	++	+	Θ
LMO lithium manganese oxide LiMnO ₂	-	+++	++	-	++	
NMC nickel manganese cobalt Li(Ni _x Mn _y Co _{1-x-y})O ₂	++	++	++	+++	+++	
LFP lithium iron phosphate LiFePO₄	+	+++	+++	++	++	


Example

materials for a better life

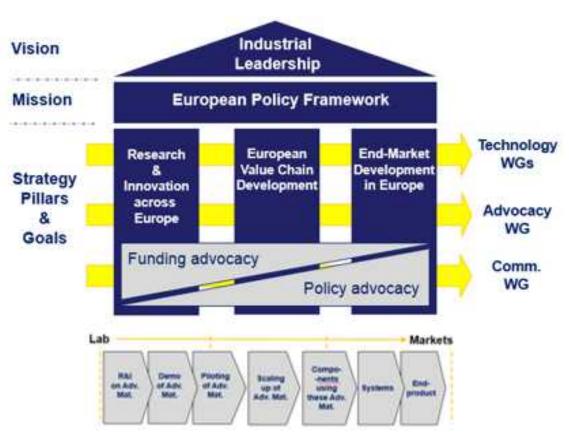
Developing products with suitable cost & performance requires strong materials R&D

Different NMC material generations are being developed

Key actors in advanced materials team up within EMIRI Energy Materials Industrial Research Initiative

- 50+ organizations active in research & innovation in advanced materials
- Collaborating to achieve commercially successful development in EU
- Of advanced materials for low carbon energy & energy efficiency

Activities of EMIRI span essential parts of the innovation value chain



Vision

To ensure the long term industrial leadership of the European "advanced materials for low carbon energy & energy efficiency" sector

Mission Statement

To be a key player at EU level in defining & implementing a policy framework for advanced materials for low carbon energy & energy efficiency

EMIRI defining topics of focus for research & innovation on various SET plan technologies including Energy Storage

2	Topics of focus (ToF)			Materials for functional layers / coatings	Composite materials	High performance materials for challenging conditions	Novel chemistry / metallurgy for new materials / systems
#1	Li ion batteries	Competitive low cost high capacity cathode materials for Li ion batteries (highest priority within ToF #1) and other battery materials to enable these (electrolytes, binders, separators,)					
		Novel, high energy density anode materials with long life time for Li ion batteries					
		Development of solid state Li Ion batteries (lowest priority within ToF #1)					
#2	Redox flow batteries						
#3	Metal air batteries (focus on Li & considering others)						
#4	#4 Power oriented materials for electrochemical capacitors - Development of pseudo-capacitors (redox-based)						