

Advanced Materials for Sustainable Energy Harvesting & Storage

Meeting of EP Intergroup CCBSD Sustainable Chemistry: Supporting Research, Innovation and Competitiveness in Europe November 13th 2013 - Brussels

Dr Fabrice Stassin Manager EU Government Affairs – Umicore fabrice.stassin@umicore.com

Umicore in a nutshell

- We are a global materials technology company (14.600 people, 79 sites, > 50% sales in Europe, Turnover 2012 @ 12.5 B€ or 2.4 B€ excl. metal value)
- Our mission is to make
 "materials for a better life"
 (from metals to high-tech applications)
- The majority of our growth comes from clean technologies
- We use application know-how to create tailor-made solutions in close collaboration with our customers
- We close the loop and secure supply by recycling production scrap and end-of-life materials

Metals

Application

know-how

Chemistry

Material science

Metallurgy

umico

Material

solutions

materials for a better life

Umicore's development fits with sustainability-driven megatrends

EU faces strong energy challenges and has set ambitious goals and priorities

EU "20-20-20" Targets by 2020:

Competitiveness

In a BAU scenario, the power sector would be accountable for ~ 30% of GHG emissions

Business-as-usual emissions split by sector in 2005 and 2030

GtCO2e per year

Source: Houghton; IEA; IPCC; UNFCCC; US EPA; Global GHG Abatement Cost Curve v2.0

Reducing CO2 emissions relies upon innovations in energy efficiency, sustainable energy harvesting & storage

Advanced Materials facilitate deployment of sustainable energy technologies *Umicore helps with its innovations*

Energy Storage using Li-ion batteries could enable a EU value chain while solving sustainability challenges

- Large storage potential forecasted (BCG 2013) with EU stronger than Japan, China and ROW
- Batteries 2 times more than Hydrogen & together >80% of the market

	Energy	Power	Safety*	Life	Cost	separato
LCO lithium cobaltite LiCoO ₂	+++	+++	-	++	+	
LMO lithium manganese oxide LiMnO ₂	-	+++	++	-	++	
NMC materials-fra lætta life nickel manganese cobalt Li(Ni _x Mn _y Co _{1-x-y})O ₂	++	++	++	+++	+++	
LFP materials-fire lotter life lithium iron phosphate LiFePO4	+	+++	+++	++	++	

Example

separator

Developing products with suitable cost & performance requires strong materials R&D

Different NMC material generations are being developed

- Reducing cost/kg
- Increasing kWh/kg

Technologies for sustainable energy harvesting & storage require "technology" metals, some being critical for EU

Critical materials (EU):

Criticality for Europe: EU-Raw Materials Initiative

Geopolitical concerns

- REE in China
- Pt in Southern Africa
- Co in Congo
- Li in the Andes
- Pd in Russia

Impact for Advanced Materials Scientists?

Functional properties & performance are at the heart of materials but additional aspects need to be considered

- Availability of needed elements
 Is there enough, can we get access, will the price remain affordable?
 → Critical metals
- Can the specific (critical) materials be recycled at their end-of-life (as alloy and/or element)?
- How can we design a product in a way that the "critical" components remain accessible for separation and recycling?
- What impact does the substitution of critical materials have on the recyclability of the product/component?
- What is the most promising approach for sustainable use of critical elements – savings & substitution or improved recycling?

Advanced Materials for clean energy & EU? EU is facing growing global competition

- Difficult to match investment project incentives available in competing regions
- Other regions strongly focus on strategic manufacturing to fight off competition
- EU does the basic research, others commercialize advanced products & processes
- Asia is moving up traditionally EU value chains due to fast catch up in innovation

EU needs to reinforce & develop its assets to compete

- EU has considerable assets in global advanced materials competition (leading research organisations and companies in several applications)
- EU is still strong in global race for patents (2nd)
- The disconnect between R&D and Innovation (manufacturing and commercialization) is HOWEVER present
- Involvement of Industry must be stimulated & facilitated such as would be the case in Horizon 2020

EP Intergroup CCBSD Meeting – November 13th 2013

Global patent and manufacturing shares for Li-ion batteries

Organizations active in adv. materials for low carbon energy technologies teaming up in EMIRI

EMIRI is a European industry-driven grouping (40+ organizations incl. leading materials companies) with goal to:

- Establish Industrial Leadership in EU \geq
- In advanced materials for competitive low carbon energy in line with the \succ SET Plan goals and its materials roadmap
- Through involvement of all stakeholders for strategic RESEARCH & INNOVATION \geq programmes (use more effectively resources available at EU scale)

EMIRI is the organisation to:

- Propose a cross-cutting focus to develop advanced materials for low carbon energy \geq
- Be based on SET Plan Materials Roadmap \geq
- Span the entire innovation value chain to achieve commercially successful \geq development of advanced materials for energy applications in Europe

AGC

H.C.Starck

SIEMENS

cea

ArcelorMitte

Heraeus

SOLVAY

IK4 OCIDETEC

LABORELEC

umicore

Cranfield

BOSCH

=

ECN

SINTEF

PLANSEP

voestalpine