Advanced Materials for Sustainable Energy Harvesting & Storage

Meeting of EP Intergroup CCBSD
Sustainable Chemistry: Supporting Research, Innovation and Competitiveness in Europe
November 13th 2013 - Brussels

Dr Fabrice Stassin
Manager EU Government Affairs – Umicore
fabrice.stassin@umicore.com
Umicore in a nutshell

- We are a **global materials technology company** (14,600 people, 79 sites, > 50% sales in Europe, Turnover 2012 @ 12.5 B€ or 2.4 B€ excl. metal value)
- Our mission is to make “materials for a better life” (from metals to high-tech applications)
- The majority of our **growth comes from clean technologies**
- We use application know-how to create **tailor-made solutions** in close collaboration with our customers
- We **close the loop and secure supply** by recycling production scrap and end-of-life materials
Umicore’s development fits with sustainability-driven megatrends

Electrification of the automobile
We are a leading producer of key materials for rechargeable batteries for laptops, mobile phones as well as electrified vehicles.

Resource scarcity
We are the largest recycler of precious metals; we are able to recycle more than 20 different metals.

More stringent emission control
We provide catalysts for 1 out of 3 cars in the world as well as for trucks & non-road vehicles.

Renewable energy
We supply key innovative materials for high-efficiency solar cells and other photovoltaic applications.
EU faces strong energy challenges and has set ambitious goals and priorities

EU “20-20-20” Targets by 2020:

- **Competitiveness**
 - Cut Europe’s energy bill
 - Create growth & jobs
 - Boost R&D where EU can become a global leader

- **Security of Supply**
 - Decrease EU’s energy dependence
 - Help balance trade: single European energy market

- **Sustainability**
 - Fight climate change
 - Limit environmental degradation

By 2050: Reduce GHG levels by 80-95% below 1990 levels

EP Intergroup CCBSD Meeting – November 13th 2013
In a BAU scenario, the power sector would be accountable for ~ 30% of GHG emissions.

Reducing CO2 emissions relies upon innovations in energy efficiency, sustainable energy harvesting & storage.
Advanced Materials facilitate deployment of sustainable energy technologies

Umicore helps with its innovations

Materials for ENERGY HARVESTING

Materials for ENERGY STORAGE

Materials for ENERGY DISTRIBUTION

Materials for ENERGY EFFICIENCY
Energy Storage using Li-ion batteries could enable a EU value chain while solving sustainability challenges

- Large storage potential forecasted (BCG 2013) with EU stronger than Japan, China and ROW
- Batteries 2 times more than Hydrogen & together >80% of the market

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Power</th>
<th>Safety</th>
<th>Life</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCO</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>LiCoO₂</td>
<td>lithium cobaltite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMO</td>
<td>-</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>LiMnO₂</td>
<td>lithium manganese oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMC</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Li(NiₓMnᵧCo₁₋ₓᵧ)O₂</td>
<td>nickel manganese cobalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFP</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>LiFePO₄</td>
<td>lithium iron phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Developing products with suitable cost & performance requires strong materials R&D

Different NMC material generations are being developed

- Reducing cost/kg
- Increasing kWh/kg

\[\Rightarrow \text{Reducing cost/kWh} \]

<table>
<thead>
<tr>
<th>Year</th>
<th>NMC Generation</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2011-2012 | Generation 1 | Higher Ni content pushes energy density:
- Increase kWh/kg
- Maintaining cost/kg
\[\Rightarrow \text{Decreases cost/kWh} \] |
| 2017 | Generation 2 | Lower Co content reduces metal cost:
- Decrease cost/kg
- Maintaining kWh/kg
\[\Rightarrow \text{Decreases cost/kWh} \] |
| 2019-2020 | Generation 3 | - |

EP Intergroup CCBSD Meeting – November 13th 2013
Technologies for sustainable energy harvesting & storage require “technology” metals, some being critical for EU

Critical materials (EU): Be, Co, Ga, Ge, In, Mg, Nb, PGM, REE, Sb, Ta, W, fluorspar, graphite

Geopolitical concerns
- REE in China
- Pt in Southern Africa
- Co in Congo
- Li in the Andes
- Pd in Russia
Impact for Advanced Materials Scientists?

Functional properties & performance are at the heart of materials but additional aspects need to be considered

- Availability of needed elements
 Is there enough, can we get access, will the price remain affordable?
 → Critical metals

- Can the specific (critical) materials be recycled at their end-of-life (as alloy and/or element)?

- How can we design a product in a way that the “critical” components remain accessible for separation and recycling?

- What impact does the substitution of critical materials have on the recyclability of the product/component?

- What is the most promising approach for sustainable use of critical elements – savings & substitution or improved recycling?
Advanced Materials for clean energy & EU?
EU is facing growing global competition

- Difficult to match investment project incentives available in competing regions
- Other regions strongly focus on strategic manufacturing to fight off competition
- EU does the basic research, others commercialize advanced products & processes
- Asia is moving up traditionally EU value chains due to fast catch up in innovation

EU needs to reinforce & develop its assets to compete

- EU has considerable assets in global advanced materials competition (leading research organisations and companies in several applications)
- EU is still strong in global race for patents (2nd)
- The disconnect between R&D and Innovation (manufacturing and commercialization) is HOWEVER present
- Involvement of Industry must be stimulated & facilitated such as would be the case in Horizon 2020

Global patent and manufacturing shares for Li-ion batteries
Organizations active in adv. materials for low carbon energy technologies teaming up in EMIRI

EMIRI is a European industry-driven grouping (40+ organizations incl. leading materials companies) with goal to:

- Establish Industrial Leadership in EU
- In advanced materials for competitive low carbon energy in line with the SET Plan goals and its materials roadmap
- Through involvement of all stakeholders for strategic RESEARCH & INNOVATION programmes (use more effectively resources available at EU scale)

EMIRI is the organisation to:

- Propose a cross-cutting focus to develop advanced materials for low carbon energy
- Be based on SET Plan Materials Roadmap
- Span the entire innovation value chain to achieve commercially successful development of advanced materials for energy applications in Europe