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Abstract

The contribution of chemometrics to important stages throughout the entire analytical process such as experimental design,
sampling, and explorative data analysis, including data pretreatment and fusion, was described in the first part of the tutorial
“Chemometrics in analytical chemistry.” This is the second part of a tutorial article on chemometrics which is devoted to the
supervised modeling of multivariate chemical data, i.e., to the building of calibration and discrimination models, their quantita-
tive validation, and their successful applications in different scientific fields. This tutorial provides an overview of the popularity

of chemometrics in analytical chemistry.
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Introduction

Chemometrics is a highly interdisciplinary field (see Fig. 1)
whose relevance among the chemical disciplines, in general,
and, analytical chemistry, in particular, has considerably grown
over the years. Despite this, it is still largely unknown to many
analytical chemists and often misused or not completely under-
stood by practitioners who rely on those very few techniques
which are implemented in the most widespread commercial
software. However, chemometrics represents a wealth of pos-
sibilities for the (analytical) chemists, as it is a discipline which
accompanies the analytical workflow at all stages of the pipe-
line. In this context, the present paper represents the second part
of a feature article aiming at highlighting the fundamental role
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that chemometrics has within analytical chemistry and the dif-
ferent tools which could and should be used to address key
issues in the field. Starting from these premises, in the first part
of this tutorial article [1], topics like sampling, experimental
design, data preprocessing projection methods for data explo-
ration and factor analysis, and data fusion strategies were cov-
ered and contextualized in the framework of specific goals
within analytical chemistry. On the other hand, the present
paper deals with aspects related to predictive modeling (both
for quantitative and qualitative responses) and validation, and
presents some successful examples of the application of che-
mometric strategies to different “hot topics,” together with a
few considerations about how the discipline will evolve in the
next years.
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Fig. 1 Chemometrics as an

interdisciplinary field ol ety

u-array

LCxLC-HRMS
GCxGCxGC-MS

Hypersp.Imaging

J

HRIAS, Ramman, FT-IR, ﬂuoch Other Analytical J

Analytical Data

Biological Data

Bases

g
H

Science

Predictive chemometrics modeling

Many applications of chemometrics in analytical chemistry
are associated with the so-called predictive modeling [2],
where a mathematical model represents the relationship be-
tween a chemical and/or physical property of a sample with
generally easier and cheaper to acquire instrumental signals.
Typical examples are modeling of protein content in wheat
samples based on their NIR signals, modeling of octane num-
ber of fuel based on the NIR signals, modeling of antioxidant
properties of tea extract based on their chromatographic fin-
gerprints, modeling of biological activity of studied com-
pounds based on their descriptive parameters, medical diag-
nostics based on genomic, proteomic and/or metabolomics
fingerprints, etc.

Chemometric models may predict both, quantitative (con-
tinuous-valued, e.g., protein content) and qualitative (discrete,
such as healthy/ill or compliant/non-compliant, class member-
ship) properties. Calibration, classification, and discrimination
type of problems (see Fig. 2) are common in chemometrics.
The same considerations hold in other predictive modeling
situations.

In the other words, the main goal of multivariate modeling
is the prediction of parameter(s), the measurement of which
would be time- and cost-intensive, based on fast and cheap
measurements such as NIR, or on calculated parameters
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(energy of interactions, topological indices, etc.). The re-
sponses to be predicted are called dependent variables and
the variables used to perform this prediction are called inde-
pendent variables.

Multivariate calibration

Assuming that the set of centered dependent variables is de-
noted as Y (m x k) and a set of centered independent variables
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Fig. 2 Schematic representation of calibration and discrimination
principles
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is denoted as X (m x n), the constructed calibration model can
be represented as:

Y=XB+E (1)

where the matrix B (n X k) collects the k vectors of regression
coefficients, and E (m x k) denotes the residuals.

If only one parameter is to be predicted, the above equation
becomes:

y=Xb+e (2)

where y and e are vectors of dimensionality m x 1 and b is a
vector of dimensionality n X 1. In the following, it is assumed
that only one parameter is predicted for the sake of parsimony,
but this approach may be extended to the prediction of multi-
ple dependent variables.

How the model is constructed depends mainly on data di-
mensionality and its correlation structure. If matrix X contains
fewer variables than samples (n <m) and these variables are
uncorrelated, then the vector of regression coefficients may be
calculated as:

b=(XX) Xy (3)

If matrix X contains more variables than samples (n > m),
and/or if these predictor variables are highly correlated, then
classical multivariate methods like multiple linear regression
(MLR) cannot be applied. This is because matrix (X’X) can-
not be inverted due to rank deficiency. In this case, Eq. (3)
may be replaced by a more general equation:

b=X"y (4)

where X* represents a “generalized inverse” of X.

Several common multivariate methods in common use,
such as Ridge regression (RR), principal components regres-
sion (PCR), and partial least squares regression (PLSR), differ
in the estimation of this inverse X*. RR is more popular
among statisticians than in chemometrics [3], probably due
the widespread use of PCR and PLS loading and score plots
for model visualization and interpretation in chemometrics.

Once the model is build (i.e., the vector of regression coef-
ficient is calculated), it may be used to predict the y value for a
new sample(s):

Ypred = Xnew b (5)

Multivariate classifiers

Many chemical problems are associated with classification,
i.e., the assignment of studied samples to one or more classes
based on a set of measurements recorded to characterize them.

One-class classification (OCC) methods (also known as
class-modeling methods) are directed toward modeling of in-
dividual classes new [4] independently of others. They are
focused on similarities among the samples from the same class
rather than the differences between classes.

In chemometrics, the most popular OCC method is soft
independent modeling of class analogy (SIMCA) new ref.
[5]. It forms a closed acceptance area that delineates the target
class in the multivariate space using disjoint PCA (performed
just on the training set in the target class rather than all objects
studied). SIMCA calculates two types of distance, the D sta-
tistic (within the disjoint PC space) and the Q statistic (from an
object to the disjoint PC space), also known by various differ-
ent names according to author. There are various ways to
interpret these distances according to author and software
package new ref. [6].

In contrast, two or multi-class classifiers (often known as
supervised discriminant methods) are used to form boundaries
between classes rather than around classes. The oldest and
most known is linear discriminant analysis (LDA) proposed
by Fisher [7]. It looks for linear surfaces (hyperplanes) which
best separate the samples from different categories in the mul-
tidimensional space, the identification of which relies on the
relative position of the barycenters of the groups (between-
class scatter B) and on the within-class variance/covariance
W. However, as it happens in regression, the presence of a
higher number of variables than samples (n >m) or collinear-
ity among the predictors result in the inapplicability of the
method, so that alternatives should be found to deal with the
multi- or megavariate data, commonly encountered in modern
chemical problems. A possible way of overcoming this limi-
tation, analogously to what already discussed for calibration,
is to project X onto a suitable low-dimensional subspace of
orthogonal variables, where discriminant analysis can be per-
formed. This can be done, for instance, by a preliminary PCA
decomposition of the X matrix (PCA-DA) or a PLS between
X and suitably defined Y (PLS-DA) [7], new [8, 9].

To perform discrimination among k classes via PLS-DA,
information about class membership of each sample is in
the form of a binary coded classification vector or matrix.
Usually, a separate set of calibrations are performed against
a classification vector for each class in the model (PLS1),
although a single model can alternatively be performed
against a classification matrix with as many columns as
classes (PLS2). Usage of this binary coding makes it pos-
sible to transform the discrimination problem into a regres-
sion problem. Assignment of a sample to the studied clas-
ses is then accomplished using a variety of decision criteria
according the predicted values in the classification vector or
matrix. Using PLS methods, in addition to predicting class
membership of individual samples, it is also possible to
investigate which variables are most appropriate as discrim-
inators or markers.
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Classification can be performed using different methods,
but each problem requires a targeted approach and there is no
universally agreed way. Discrimination can perfectly attribute
a new sample if it is a member of one of a number of
predefined classes. However, in case it does not unambigu-
ously belong to any of such predefined classes, many two or
multi-class methods may often have problems with outliers (or
ambiguous samples). OCCs can distinguish the target class
from any other objects and classes; therefore, they are more
usually employed for authentication new [10] in
chemometrics, not requiring samples to belong to predefined
classes. The alternative (Bayesian) methods although com-
mon in machine learning are not well established within
chemometrics.

More details about chemometrics modeling

The quality of the model is determined by the quality of the
data used for its building. One of the most important issues
which influences model performance is the “representativity”
of the model. Samples included into the model dataset should
represent all sources of data variability within the scope of the
experiment or the observed system.

While constructing the PCR, PLSR, PCA-DA, or PLS-DA
model, it is necessary to properly estimate model complexity
(the number of latent variables used). Too many latent vari-
ables lead to overfitting (an increase of the variance of the
predicted values), too few of them cause underfitting (an in-
crease of the bias of the predicted values). Model with a proper
number of latent variables ensures an appropriate compromise
(balance) between the variance and bias. Model complexity is
usually determined, based on the cross-validation procedure
(vide infra).

Model performance

Each model has to be carefully evaluated. Model fit is calcu-
lated for the samples from the model set. Of course, the most
important is model predictive power, i.e., its ability to correct-
ly predict a dependent variable(s) for new samples (not used
for the model building). Estimation of the model predictive
power can be performed based on the independent and repre-
sentative test set, or using the cross-validation procedure (ap-
plication of the cross-model validation is a recommended ap-
proach, [11]).

Good models have low complexity (i.e., few latent vari-
ables) and low, yet similar, cross validation and test errors. If
predictive power of a model is unsatisfactory, we should con-
sider the following reasons:
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+ data do not contain necessary information for modeling
the dependent variable;

» data contains outliers and

* the studied relationship is highly non-linear.

The first case can be diagnosed based on, e.g., the UVE-
PLS method [12]. In the arsenal of chemometric tools, there
are also the robust versions of PCR and PLSR, which allow
dealing with the outliers [13]. We are also equipped with effi-
cient approaches to deal with non-linearities [14].

Kernels and dissimilarity matrices

Area of applicability of multivariate methods, such as PCR or
PLSR, can be highly extended to very complex non-linear
systems, when instead of the model described by Eq. (1), the
following model is constructed:

Y=KA (7)

where K (m x m) denotes the kernel or dissimilarity matrix,
and A (m X k) represents the k vectors of regression
coefficients.

The simplest kernel is defined as K=XX". It is the linear
kernel, but there are many other interesting non-linear kernels,
the Gaussian kernel being the most popular one. New possi-
bilities of modeling complex non-linear systems are also of-
fered by different types of dissimilarity matrices such as the
Euclidean distance matrix [14].

Validation

Classical linear regression modeling relies on strong assump-
tions about the fulfillment of the model and optimal least-
squares estimation of the parameters under a set of specific
constraints. Chemometrics modeling on the other side uses
less assumptions. It extracts and represents the information
in the collected experimental data through models which, de-
pending on the specific application, provide approximations
of the system under study or predictions to be drawn. Here, it
should be stressed that given the problem under investigation
and, in particular, the available data, there is always more than
one single model a researcher can, in principle, calculate.
However, when dealing with soft models, i.e., models which
are based mostly only on the experimentally measured data,
various additional factors (e.g., the number of available sam-
ples and their representativeness via an appropriate experi-
mental design (see part I of this article, [1]), the peculiar char-
acteristics of the method, the specific algorithm for computing
the solution) concur in defining their performances, so that not
all the possible models have the same quality.
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In this framework, validation is a fundamental step of the
chemometrics pipeline which is aimed at evaluating whether
reliable conclusions may be drawn from a model [15, 16]. Ina
fundamental review [15], Richard Harshman suggests that the
validation process should include the appropriateness of the
model, the computational adequacy of the fitting procedure,
the statistical reliability of the solution, and the generalizabil-
ity and explanatory validity of any resulting interpretations.

As the definition suggests, checking for appropriateness of
the model means to verify how appropriate the model is for the
specific questions/problems one has to deal with. In the con-
text of soft modeling, this aspect implies examining, e.g.,
whether a latent structure should be expected and, if so,
whether it should be bilinear or multilinear, or whether orthog-
onality of the loadings should be imposed to achieve a hierar-
chical relation among the components. Investigation of
whether the data should be preprocessed or some sort of data
transformation (e.g., logarithmic or square root) should be
used also falls within this aspect.

On the other hand, computational correctness has mainly to
do with the fitting procedure used to calculate the model pa-
rameters. In particular, one should investigate if an iterative
algorithm has converged to the desired global optimum or,
instead, a local minimum is reached, whether the solution is
independent or not on the choice of the starting point, and how
reproducible it is.

Addressing the issue of statistical reliability means to in-
vestigate how appropriate the distributional assumptions are,
if any, how stable and parsimonious the model is with respect
to resampling, and whether the correct number of components
has been chosen. In particular, estimating what is the stability
of the solution across subsamples allows to identify whether
the results are reliable enough to allow interpretation and,
possibly, if the conclusions can be generalized to new
samples.

Lastly, the aspect of explanatory validity deals with
assessing how well the characteristics of the system under
study are captured by the model. Addressing this issue
means, e.g., examining to what extent are the results in-
terpretable and how are the latent factors calculated by the
model related to the external information available on the
individuals or the variables, verifying whether there could
be nonlinearities or, in general, whether the residuals con-
tain further (unmodeled) systematic variation, indicating
that not all the structure of the data has been captured/
explained by the model. Questions about whether highly
influential observations or extreme points/outliers, which
could bias the solution, are present or the discussion of
whether other results confirm or conflict with the conclu-
sions of the model also fall within this aspect.

Having identified the main issues embraced by the val-
idation process, then appropriate diagnostics should be
defined accordingly in order to evaluate the quality of

the model(s). These diagnostics, which may be expressed
in a graphical form (allowing a straightforward evalua-
tion), quantitatively or in the formalism of statistical test-
ing, can rely on the investigation of model parameters, or
of the residuals. In the latter case, to avoid overoptimism,
it is essential not to use for validation the residuals of the
fitted models (i.e., those evaluated on the same data used
for calculating the model parameters, i.e., the so-called
calibration or training set), as in almost all the cases they
cannot be considered as representative (neither in terms of
structure nor of magnitude) of the residuals that would be
obtained by applying the model on new data. Strategies
for obtaining more realistic residuals include the use of an
external test set and cross-validation.

Test set validation consists in applying the model to a new
set of data (the test set) and calculating the corresponding
residuals (which of course implies that the necessary informa-
tion for this computation—e.g., the true values of the re-
sponses in the case of predictive modeling—is available for
these new samples). Accordingly, this validation strategy is
the one which most closely resembles how they will be actu-
ally used, i.e., to make predictions on future observations.
Ideally, the test set should be built to be as representative as
possible of the population of future measurements (and,
hence, to be as independent as possible from the calibration
set), e.g., by including samples collected a sufficient amount
of time after the training ones or coming from different loca-
tions, suppliers, and so on. This is the only way in which a
reliable estimate of the residuals to be expected for real data
can be obtained.

Cross-validation is an internal resampling method
which simulates test set validation by repeatedly splitting
the available data in two subsets, one for model building
and one for model evaluation. At each iteration, a part of
the data is left out and a model is calculated without these
values; the model is then used to predict the left out data
and the corresponding residuals are computed. The proce-
dure is repeated until each observation has been left out at
least once or when the desired number of iterations is
reached. This strategy is particularly suitable for small
data sets but since the calibration and validation sets are
not truly independent on one another may result in a bi-
ased estimate of the residuals and, hence, of the overall
model quality. Indeed, cross-validation is often used for
model selection or model comparison but should not be
used for the final assessment of the reliability of the mod-
el, where test set validation should be preferred.

When the environmental conditions change—e.g., the tem-
perature of the spectrometer—the measured data are impacted
and the model may not stay valid. This specific problem falls
into the so-called robustness problem and must be treated with
specific diagnostic and correction methods which are out of
the scope of this paper.
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Successful applications of chemometrics
in analytical chemistry

Instrumental methods of analysis provide rich information about
chemical systems which can be arranged in data structures of
different complexity [17] and can be analyzed by chemometric
methods which take profit of their intrinsic structure (Fig. 3).
Examples of successful applications of chemometrics in
Analytical Chemistry appeared already in the 1980s and
1990s of the past century in the fields of food/agriculture
analysis [18], oil octane determinations [19], and process an-
alytical chemistry in industry [20]. These successful applica-
tions were dominated by the development and use of pattern
recognition, cluster analysis and multivariate calibration
methods [21]. Chemometric methods were also expanding
rapidly in other fields like in source apportionment environ-
mental chemistry studies [22] or in QSAR studies in medicinal
chemistry [23]. This tendency was then expanded at the be-
ginning of this century by the incorporation of new applied
fields, especially with the development of high throughput
spectroscopic and chromatographic analytical methods pro-
viding megavariate data [24]. Other significant examples of
this tendency nowadays are in the explosion of omics, spec-
troscopic imaging, and all new big analytical data applica-
tions, which are described in more detail below as example.

Omics

The emergence of the “omics” paradigm led to dramatic shifts
in analytical chemistry (see Fig. 4 and [25]). Widely used
principles for chemical detection and quantification of chem-
ical mixtures, such as nuclear magnetic resonance (NMR) and
liquid and gas chromatography coupled to mass spectrometry,
are now used for comprehensive quantification of proteins and
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metabolites—genes and their transcripts require more specific
technology. This, however, requires considerable chemomet-
ric adaptations to provide informative models.

In omics data, the vast majority of measured compounds
is unrelated to the studied biochemical process. Such unre-
lated compounds will contribute considerably to chemomet-
ric models. “Sparse” methods [26] limit the compounds
that contribute to those that describe the studied biochem-
ical process well, providing information-dense and process-
focused models. Sparse methods, however, specifically aim
for the smallest set of informative biomarkers, such that
many relevant molecular species, related to included com-
pounds, may be ignored. Developing a method to find a
comprehensive set of compounds involved in a studied
biochemical process is one of the imminent challenges in
chemometrics.
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Conventional applications of chemometrics may aim at
classifying sample groups or predicting a difficult-to-
measure sample characteristic. Many omics studies however
aim for a comprehensive overview on the metabolites and/or
proteins within a biological system that respond to combina-
tions of experimental factors like time, diet, sex, and species.
Principal component analysis and PLSR cannot extract such
information interpretably. Combining information on the ex-
perimental design by analysis of variance (ANOVA) with
multivariate PCA, for example the ASCA method [27], has
proven invaluable to understand contributions of different ex-
perimental factors to the metabolic and protein complement of
an organism.

Chromatography, mass spectroscopy (MS), and NMR-based
detection may introduce considerable artifacts, e.g., chromato-
graphic misalignment, that needs to be removed prior to model-
ing omics data. Concentrations may vary many orders of mag-
nitude between metabolites or proteins, as does the sensitivity
of analytical detection and the bioactivity of each compound,;
the values that an omics analysis returns may therefore be in-
comparable between metabolites or proteins. Thirdly, the sam-
ple origin itself may reduce information content of the resulting
data: the amount of water excreted from the body greatly affects
urinary metabolite concentrations, such that the resulting data
needs to be normalized for this. Several data pre-processing
methods are available to mitigate such issues [28], but a com-
prehensive study on preprocessing metabolomics data shows
that data preprocessing may considerably affect how well the
model distinguishes samples and indicates relevant biomarkers.
In [29], different data analysis strategies for LC-MS metabolo-
mics studies and alternatives for an optimal selection of the
different alternatives are given.

Hyperspectral imaging

Hyperspectral imaging is an active area of research that has
grown quickly during the last years. Hyperspectral images are
measurements that contain spatial and spectral information
and they provide chemical information and detailed knowl-
edge of the distribution of the sample constituents in the sur-
face (or volume) scanned (Fig. 5). Hyperspectral images result
from spectroscopic readings of hundreds of contiguous spec-
tral channels at each spatial position (pixel) of the target sam-
ple under study. Hyperspectral imaging techniques can be
based on different spectroscopies like Raman, infrared, and
fluorescence. They are useful methods in different areas, such
as polymer research, materials science, biomedical diagnostic,
pharmaceutical, industry, analytical chemistry, process con-
trol, and environmental analysis [30, 31].

Combination of hyperspectral imaging with chemometrics is
especially useful for the quantification of the compounds in a
product and for heterogeneity control. The application of

chemometric tools is needed at different stages of image data
analysis such as in compression (i.e., wavelets), pretreatment
(i.e., correcting baseline, background), and in exploration.
Several methods have been proposed to extract the maximum
amount of information from the available spectral imaging data.
Multivariate image analysis (MIA) and PCA have been applied
in this context. Quantitative analysis of image constituents has
been known under the denomination multivariate image regres-
sion (MIR) and it has often been performed by multivariate
calibration methods, like PLSR. Another possible approach
for image analysis is multivariate curve resolution (MCR),
which is based on a bilinear model of the image, i.e., concen-
tration profiles (folded back into distribution maps) and pure
spectra of the image constituents. The MCR-ALS (alternating
least squares) method has been adapted particularly well to
hyperspectral image resolution due the ease of introduction of
external spectral and spatial information about the image as a
constraint and due to its ability to work with single and multiset
image arrangements [32, 33]. At present, different alternatives
for hyperspectral image data fusion have been proposed [34].
Mass spectrometry imaging (MSI]) is an extremely useful
tool for the study of complex mixtures in real biological sam-
ples such as cells or tissues [35, 36]. Its usefulness is due to its
high chemical specificity to simultaneously analyze multiple
compounds in a very wide mass range, from small (i.e., me-
tabolites) to large molecules (i.e., proteins). In addition to the
qualitative information about the presence or absence of a
particular molecule, MSI gives the spatial distribution of these
molecules over the analyzed sample surface. Thus, MSI cou-
ples the spatial information provided by the spectral imaging
techniques with the chemical specificity based on the mass
accuracy of the high-resolution mass spectrometry techniques
(and possible MS/MS analysis) that allows unambiguous
identification of the detected molecules. Application of che-
mometric methods to MSI data faces a bottleneck concerning
the vast size of the experimental data sets. The standard ap-
proach for MSI data compression consists in binning mass
spectra for each pixel to reduce the number of m/z values.
New approaches based on the selection of the regions of in-
terest (ROI) have been proposed in this context [37].
Applications of chemometric methods rely on the use of
appropriate and easily accessible software. In Table 1, a list of
the most popular software used by chemometricians at present
is listed together with their internet links. Some of these tools
are commercial products, usually with low-cost licenses for the
academic purposes, and others are freely available as open
source products. Selection of them can be done according to
the working environment and purposes. For instance, in aca-
demics and research, the MATLAB (The Mathworks Inc) is a
commonly used underlying computer and visualization envi-
ronment, also due to the considerable number of advanced tool-
boxes specifically designed to solve a very large number of
scientific and technological problems. They provide the state
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Fig. 5 Hyperspectral imaging: spatial and spectral information of the sample constituents

Table 1  Chemometrics software

Software name Owner/Author Link Purpose
MARLAB and Toolboxes The Mathworks https://www.mathworks.com/ General
PLS Toolbox (MATLAB) Eigenvector Inc http://www.eigenvector.com/ General

Tensorlab

Factor Analysis and

Chemometrics Toolbox

Multivariate calibration

Multivariate Curve
Resolution

Classification toolbox
N-way toolbox

Unscrambler
Pirouette

SIMCA

Prosensus Pro MV

Multivariate Statistical
Analysis in
Chemometrics in R

R-based chemometrics
software

N. Vervliet, O. Debals, L. Sorber, M.
Van Barel, and L. De Lathauwer,

University of Leuven
Applied Chemometrics, Inc.

A. Olivieri, IQUIR

R. Rauler, A. de Juan and J. Jaumot

IDAEA-CSIC and
University of Barcelona
D. Ballabio and R. Todeschini
University of Milan
Rasmus Bro, University
of Copenhagen
CAMO
Infometrix
Umetrics, Sartoius
MACC/ProSensus
Peter Filzmoser and
Kurt Varmuza
University of Wien

Chemometrics Group of the
Italian Chemical Society

http://www.tensorlab.net

http://www.chemometrics.com

http://www.iquir-conicet.gov.ar/

eng/div5.php?area=12
https://mcrals.wordpress.com/

http://michem.disat.unimib.it/chm/download/

classificationinfo.htm

http://www.models.life.ku.dk/nwaytoolbox

http://www.camo.no
http://www.infometrix.com
http://www.umetrics.com
http://www.prosensus.ca

https://cran.r-project.org/web/packages/

chemometrics/index.html
https://www.rdocumentation.

org/packages/chemometrics/versions/1.4.2
http://gruppochemiometria.it/index. php/software

N-way data analysis

Applied chemometrics
Multivariate calibration

Multivariate curve resolution

Classification and QSAR
N-way data analysis

General

General

Pattern Recognition
Process control/monitoring

General

General
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of the art solutions to many of these problems. These toolboxes
are either purchased directly to the vendor or provided freely by
a large number of developers worldwide. In the same
MATLAB environment, there are also other commercial prod-
ucts like the PLS Toolbox, which is one of the tools more
profusely used by chemometricians in their work. This toolbox
is constantly evolving and improving, incorporating many of
the tools developed by chemometricians worldwide. Other
more specific toolboxes in this context also implemented for
the MATAB environment are given in the table. Among them,
the TENSORLARB toolbox gives a very large number of tools
for the investigation of complex multi-way data sets using ten-
sor products and most of the currently available variants of
multilinear model-based methods. Other toolboxes are avail-
able for multivariate calibration (MVC packages for 1st, 2nd,
and 3ed order calibration), multivariate curve resolution
(MCR), or classification and discrimination type of problems.
Commercial software developed as end products for most cur-
rent applications in the industry are also available in the market
as the Unscrambler (CAMO), Pirouette (Infometrix), or
SIMCA (Sartorious) products. Recently, due to the increasing
number of users of open source R language applications, espe-
cially in the biosciences fields, R language platforms are
gaining popularity in the chemometrics field as well and there
are already chemometrics software packages under this open
source environment.

Where are we going?

Put 1000 chemometricians in a room and there will be 1001
opinions as to its future directions. There is no Nostradamus of
chemometrics, so we can only guess. However, at least some
of chemometrics is about predicting future trends.

One thing that is certain is that the subject will become very
diverse and chemometrics plays to very diverse audiences. For
example, some will be advanced statisticians with a strong
grounding in methods for estimation and distributions and
hypothesis testing. There will be computer scientists who are
good at algorithm development. And at the other end, synthet-
ic chemists who just want a package to optimize their reac-
tions. There is no unifying knowledge base.

However, classically, most of modern chemometrics was
first applied within analytical chemistry, and many of the ma-
jor conferences, journals, and texts are still primarily based
within analytical chemistry, which will remain an important
but not exclusive cornerstone. In the context of learning,
chemometrics though still has trouble incorporating itself into
the core knowledge base of the analytical scientist’s syllabus.
This is partly because the core corpus of knowledge is
crowded and any new material must displace older topics.
Basic univariate statistics has always been part of the core
understanding of analytical chemists, including concepts such

as precision, accuracy, univariate calibration, uncertainty, etc.
Skoog and West [38] contain only univariate analysis in their
opening chapters, as do Christian and colleagues [39].
Spreadsheets are considered important for basic analytical
chemistry, but multivariate analysis is not.

Chemometrics is likely only to become part of the basic
education of analytical scientists if other, more classical,
methods are removed. As instrumental techniques replace
classical tests, the need to have some familiarity with compu-
tational and statistical approaches for analyzing instrumental
data will hopefully become essential learning for the analyst,
although this may take many years or even decades. There is
also a problem that some excellent laboratory-based analysts
are not all mathematically oriented, and course organizers,
wanting to attract student to fill their places may not want to
load their courses with too much maths.

Until that time, chemometrics will be viewed as an advanced
topic for analytical chemists, primarily for specialism at gradu-
ate level. A few universities with very active chemometricians
will fight to incorporate this into the basic syllabus, but
chemometrics will primarily be encountered by analytical
chemists at graduate level, or in professional development
courses. A few enthusiasts or members of dedicated groups will
encounter chemometrics personally without the need for for-
malized courses. However, as instruments become ever more
sophisticated, the quantity of data expands, and the need for
chemometrics over classical analytical tests increases in real
life. Only over several decades will applied multivariate statis-
tical approaches replace traditional laboratory testing, when the
latter becomes redundant. And at the same time, in other scien-
tific disciplines and communities like in bioinformatics and data
sciences, new developments and proposals emerge, with signif-
icant challenges in big data storage and processing. Effectively
analyzing all currently available data through directed statistical
analysis is very difficult [24, 25, 40].

Within research, though, as megavariate datasets become
more common, there will be an increased need for
chemometrics in research, sometimes though unfortunately
standing on weak foundations as basic education is lacking.
Two key future growth points are identified.

Metabolomics is a very rapid point for expansion. This
both involves destructive analysis primarily from spectrosco-
py and chromatography, and also in situ approaches such as
hyperspectral imaging. The growing need will be to educate
users about the quality of data, both to improve instrumental
resolution and signal quality, and to obtain sufficient and well
representative samples. Unfortunately, the majority of
metabolomic data is of insufficient quality for sophisticated
chemometrics analysis, often leading to expensive but incon-
clusive experimentation. An urgent need is for experimenters
to consult chemometrics experts before rather than after data is
collected. Although there are some very elegant descriptions
of the application of chemometrics to well designed and
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controlled experiments, allowing the use and development of
new algorithms, such datasets are very much the exception
rather than the rule, and a major job is to educate laboratory-
based scientists who will have missed out of chemometrics
during their basic training.

Heritage Science is another important growth point where
chemometrics will play an important role in the future.
Especially important is the ability to study works of art non-
invasively using methods such as infrared and Raman spec-
troscopy, hyperspectral imaging, and also X-ray fluorescence,
bringing the laboratory to the museum. Underpaintings, resto-
rations, and even forgeries can be uncovered by looking at the
layers. Chemometrics has a major role to play resolving and
interpreting these complex spectroscopic fingerprints.

While the number of users will expand dramatically, the num-
ber of investigators developing fundamental new methods is
unlikely to increase. As more established workers retire, or pass
away, or move onto other jobs and interests, new colleagues step
into their footsteps. The majority of chemometric data is not of
sufficient quality to benefit from most of the frontline methods.

In computing and maths, it is well known that most novel
approaches remain in dusty books and rarely read papers. But
a small number do break through and can be revolutionary.
There will always be conferences and fora for the more ad-
vanced theoreticians. A few will be lucky enough to work
with colleagues who do see the benefit of designing experi-
ments to take advantage of the latest in innovative data anal-
ysis. Some emerging areas are listed below.

Combining multivariate methods that take into account in-
teractions between variables as well as experimental factors,
such as multilevel approaches, ANOVA-PCA and ASCA is
likely to be an important growth area where chemometricians
can develop niche methods.

The interaction between the large machine learning com-
munity and the chemometrics community is potentially a sig-
nificant future avenue. Approaches such as support vector
machines [41], self-organizing maps [42], and related
methods [43] may play a greater role in extracting data from
complex analytical measurements. However, an important
challenge is the transition of these methods, that have proven
highly successful for vast amounts of information-sparse data
that has been poorly characterized, to the analysis of analytical
data from technology on which much is known about the
measurement principle, artifacts, and quantitative methods to
remove these. Data, that may also have been collected on
experimentation with technical, analytical, and biological rep-
lication that is invaluable to assess and characterize a priori the
information content in the data. Among all these techniques,
support vector machines are gaining more popularity because,
by the use of suitable transformations like the ones described
in the section Kernels and dissimilarity matrices, they are able
to handle non-linear problems conserving many of the advan-
tages of linear-based models [44-46].

Computationally intense approaches are also likely to be of
interest to experts. Traditionally, chemometrics was developed
in the 1970s and 1980s using very economical methods for
validation such as cross-validation. More computationally de-
manding approaches such as the bootstrap or double cross-
validation are now feasible in realistic timescales even for
moderately demanding datasets, and have become an impor-
tant area of development.

These advances, among others, will continue to occupy the
minds of pioneering researchers. Different approaches have
come in waves, examples being Kalman filters, and wavelets,
sometimes filling conferences and journals for a few years,
and then step back. Others will develop into fundamental tools
of the chemometrician, encountering ever more complicated
but in some cases messy data, with, at the same time, ever
more access to available computing power.

The future will be exciting, but diverse.

Conclusions

In the previous first part of this feature article (1), we have
revised different aspects of chemometrics including aspects
like experimental design, sampling, data pre-processing, pro-
jection methods, data fusion, and also gave a fast historical
overview of the evolution of the field. In this second part, we
have covered other important aspects of this subject like
modeling, calibration, discrimination, validation, prediction,
and revised some classical and recent important applications
of chemometrics in the omics and hyperspectral imaging
fields. This second feature article ended with a discussion
about the perspectives and future evolution of the field.
Overall, the two papers have intended to give a fast and easy
to read summary of the chemometrics field from the authors’
perspective. It is clear however, that this only provides a pre-
liminary overview of the field and that more advanced reading
for specific topics is found in more comprehensive works. In
Table 2, a list of major reference works and textbooks in
chemometrics is given for those interested in a deeper insight
of the field. Among them, the Data Handling in Science and
technology series and the Comprehensive Chemometrics
Chemical and Biochemical Data Analysis major reference
work are continuously evolving to cover and summarize the
new advances in the chemometrics and related fields. After
40 years of development, chemometrics has become a mature
scientific field and the tools developed by chemometricians
are helping to solve very challenging analytical problems in
different applied fields.
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