

EU Critical raw materials in the circular economy and strategic value chains and EU R&D funding

The Periodic Table and us: its history, meaning, and element scarcity 22 January 2019, European Parliament, Brussels

Peter Handley

Head of Unit C2 - «Resource Efficiency and Raw Materials» European Commission. Directorate-General for Internal Market, Industry, Entrepreneurship and SME's (DG GROW)

peter.handley@ec.europa.eu

Raw Materials

	1						Per	iodic 1	[able o	of the	Eleme	ents						18
1	ы]																	²
																		пе
	1.01	2											13	14	15	16	17	4.00
3		4											5	6	7	8	9	10
	Li	Be											B	C	N	0	F	Ne
Li	ithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Heon
_	6.94	9.01											10.81	12.01	14.01	<u>16.00</u>	19.00	20.18
11		12 Mari											13	14 C:	15 n	16 C	¹⁷ CL	¹⁸ A
	Na	ivig											AI	SI	P)	C	Ar
2	22.99	24.31	3	4	5	6	7	8	0	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19		20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Po	tassium	Calciem	Scandium	Titanium	Vanadiem	Chromium	Manganese	Iron	Cobalt	Hickel	Copper	Zinc	Gallium	Germanium	Arsenic	Seleniam	Bromine	Krypton
3	9.10	40.08	44.96	47.87	50.94	51.99	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	84.80
37	DL.	³⁸ C	³⁹ V	40 7	41	42	⁴³ -	44 D	45 DL	46 D.J	47	48	49	50	51 Ch	⁵² -	53	54
	KD	Sr	ľ	Zr	DVI	IVIO	IC	ĸu	Kn	Pa	Ag	Ca	In	Sn	SD	le		xe
8	5.47	87.62	88.91	91.22	92.91	95.95	98.91	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.90	131.29
55	<u> </u>	56	57-71	\overline{n}	73	74	75	76	\overline{m}	78	79	80	81	82	83	84	85	86
	Cs	Ba	Lanthanides	Hf	Ta	W	Re	Os	lr	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
	esiem	Barium		Hafniem	Tantalum	Tungsten	Rhenium	Osmium	Indiam	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
<u>_</u>	32.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.09	196.97	200.59	204.38	207.2	208.98	[208.98]	209.99	222.02
87	г	88 D-	89-103	104 D£	105 DL	106 C m	107 DL	108	109	110 D-	111 D.m.	¹¹²	113 NIL	114	115 M.a	116	¹¹⁷ T -	118
	Fr	ка	Actinides	KT	DD	Sg	BU	HS	IVIC	DS	ĸg	Cn	IND	FI	IVIC	LV	IS	Ug
1 1 2	ancium 22.02	226.03		100erlordini [261]	12621	22200000000000000000000000000000000000	E0000E00	Hassium (260)	rozal	Carnistaduum (281)	roenogenium [280]	Copenicium (285)	12861	FIERWINIM F2.8.01	Moscovium [28:0]	Liverniorium [203]	rennessne r2041	r 12 Ganesson

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanem	Cerium	Praseodymium	Neodymiam	Pronethium	Samarium	Erropiun	6adoliniem	Terbium	Dysprosium	Holmium	Erbium	Thulun	Ytterbiam	Lutetium
138.91	140.12	140.91	144.24	144.91	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.06	174.97
⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	[%] Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr
Actinium	Thorium	Protectinium	Uranium	Neptunium	Plutonium	Americiam	Curiem	Berkelium	Californium	Einsteinium	Fermium	Mendeleviern	Hobelium	Lawrenciem
227.02	222.04	221.04	228.02	227.05	244.05	242.05	247.07	247.07	251.08	125.41	257.10	259 1	250,10	12621

0.3117 Todal Belmenstine schenzensten.olg 2

EU Critical Raw Materials assessment 2017

- 78 raw materials evaluated with fact sheets available, revised methodology published – CRM website
- Commission's Communication on 2017 list of Critical Raw Materials for the EU, COM(2017)490, 13.9.2017

2017 CRMs (27)										
Antimony	Fluorspar	*LREEs	Phosphorus							
Baryte	Gallium	Magnesium	Scandium							
Beryllium	Germanium	Natural graphite	Silicon metal							
Bismuth	Hafnium	Natural Rubber	Tantalum							
Borate	Helium	Niobium	Tungsten							
Cobalt	*HREEs	*PGMs	Vanadium							
Coking coal	Indium	Phosphate rock								

CRM assessment 2020

- European Commission
- Similar scope and methodology
- Work and consultations in 2019
- Publication in 2020

*HREEs=heavy rare earth elements, LREEs=light rare earth elements, PGMs=platinum group metals

Map of CRM ore deposits in Europe

Raw Materials Initiative EU Critical Raw Materials

Materials

Raw Materials Initiative EU CRM assessment

Revised methodology, based on criteria, priority data and information over the last 5 years, thresholds, comparability resulting in a single list

Raw Materials

Biggest suppliers of CRM to the EU

Raw Materials Initiative EU Critical Raw Materials

Study on the review of the list of critical raw materials 2017

European Battery Alliance

Raw Materials

Batteries – example of the strategic EU industrial value chains

The objective is:

- To create a competitive manufacturing value chain in Europe with sustainable battery cells at its core .
- To capture a battery market of up to €250 billion a year from 2025 onwards. Covering the EU demand alone requires at least 10 to 20 'gigafactories' (large-scale battery cell production facilities).
- Raw and processed materials:
 - cobalt, lithium, natural graphite, nickel; but also manganese, silicon metal,

Global and EU production of battery materials

Raw Materials Initiative EU Critical Raw Materials

End-of-life recycling input rates in EU 28

Raw Materials Initiative Circular Economy

End-of-life recycling input rate (EOL-RIR) [%]

	_																
н				> 50	%												He
		> 25-50%											1%				
Li	Be			> 10	-25%							B*	С	N	0	F*	Ne
0%	0%		1-10% 0.6% 1%														
Na	Mg	<1% Al Si P* S Cl Ar												Ar			
	13%											12%	0%	17%	5%		
K*	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0%		0%	19%	44%	21%	12%	24%	35%	34%	55%	31%	0%	2%		1%		
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
		31%		0%	30%		11%	9%	9%	55%		0%	32%	28%	1%		
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	1%	La-Lu ⁺	1%	1%	42%	50%		14%	11%	20%			75%	1%			
Fr	Ra	2	Rf	Db	Sg	BK	Ks	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		Ac-Lr ²															
	1		1	1	1		1	1			1			1			1

¹ Group of Lanthanide	La 1%	Ce 1%	Pr 10%	Nd 1%	Pm	Sm 1%	Eu 38%	Gd 1%	Tb 22%	Dy 0%	Ho 1%	Er 0%	Tm 1%	Yb 1%	Lu 1%
² Group of Actinide	Ac	Th	Pa	U	Np	Am	Cm	Bk	Cf	Es	Fm	Md	No	No	Lr

JRC elaboration based on the EU list of Critical Raw Materials (2017) and MSA Study (2015

* F = Fluorspar; P = Phosphate rock; K = Potash, Si = Silicon metal, B=Borates.

Raw Materials Initiative Circular Economy

Report on Critical Raw Materials and the Circular Economy

Objectives:

- To help EU Member States implement the new provisions on critical raw materials in the EU Waste Framework Directive
- Provide information, data sources and identify best practices and possible further actions

Issued in January 2018 (SWD(2018)36), taking into account the 2017 list of 27 critical raw materials

Key Sectors:

- Electric and Electronic Equipment
- Automotive
- Batteries
- Renewable Energy
- Defense equipment
- Chemicals & Fertilizers

Horizon 2020

Societal Challenge 5 call - "Greening the economy in line with the Sustainable Development Goals (SDGs)"

Major Issue Areas for Mining and the SDGs

- ✓ €240 million available under SC5 (plus FTI, SME Instrument)
 - 2/3 of the budget for Innovation Actions (TRL 6-7)
 - Specific attention to CRMs, Circular economy, Production, Substitution...
- ✓ Feed into EU Raw Materials Information System RMIS
- ✓ "Bridge" to Post-2020 "FP9"

Horizon 2020 Societal Challenge 5 Work Programme 2018-2020

CE-SC5-07-2018-2019-2020: Raw materials innovation for the circular economy: sustainable processing, reuse, recycling and recovery schemes (IA)

- a) Sustainable processing and refining of primary and/or secondary raw materials
- b) Recycling of raw materials from end-of-life products
- c) Recycling of raw materials from buildings
- d) Advanced sorting systems for high-performance recycling of complex end-of-life products

CE-SC5-08-2019: Raw materials policy support actions for the circular economy (CSA)

c) Responsible sourcing of raw materials in global value chains

SC5-09-2019: New solutions for the sustainable production of raw materials (RIA)

- b) Digital mine
- c) Recovery of metals and minerals from sea resources (processing)

SC5-10-2019: Raw materials innovation actions: exploration and Earth observation in support of sustainable mining (IA)

- b) Integrated exploration solutions
- c) Services and products for the extractive industries life cycle
- Budget: over €80 million
- Deadlines: 19 February 2019 (CSA and First stage of RIA, IA); and 4 Sep 2019 (Second stage of RIA, IA) Raw Materials

Commission proposal for a € 100 billion R&I funding programme (2021-2027)

• Digital and Industry: €15 billion (Circular Industries (incl. "Raw Materials"), Low-Carbon and Clean Industries

Large part of the periodic table will be crucial for the strategic value chains

Responsible and sustainable sourcing is key for Resource security

High tech metals will become oil and gas of tomorrow

Thank you!

Critical raw materials for the EU:

http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical en

Methodology for establishing the EU list of critical raw materials: https://publications.europa.eu/en/publication-detail/-/publication/2d43b7e2-66ac-11e7-b2f2-01aa75ed71a1/language-en/format-PDF/source-32064602

Report on critical raw materials and the circular economy :

https://publications.europa.eu/en/publication-detail/-/publication/d1be1b43-e18f-11e8-b690-01aa75ed71a1

Raw Materials Information System:

http://rmis.jrc.ec.europa.eu/

EU Raw materials, metals, minerals and forest-based industries:

https://ec.europa.eu/growth/sectors/raw-materials en

EIP on Raw Materials:

https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en

Horizon 2020 - raw materials and calls:

https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/index.html

Back up slides

Mining production

Mobility package Action Plan on Batteries Battery raw materials

Mining production in Europe: cobalt, lithium, natural graphite, nickel; metallic content, tonnes (2016) (Source: Survey on battery raw materials RMSG, 2018) **Cobalt:** 9,698 t (7.7%) **Lithium:** 322 t (0.9%) **Natural graphite:** 12,650 t (1.1%) **Nickel:** 270,126 t (13.8%)

Figure 2 – World share of European production (2016) (Source: Survey Member States- RMSG, 2018)

Mobility package Action Plan on Batteries

UNFC classification	Commercial projects (E1;F1; G1,2,3) ¹	Potentially commercial projects (E2;F2;G1,2,3) ¹	Non-Commercial projects (E3;F2;G1,2,3) ¹	Exploration projects (E3;F3;G4) ¹
Cobalt	ł	Total 3 SE(3)	10 ES(1), FI(5), SE(4)	25 AT(2), CY(3), CZ(1), ES(7), FI(1), IE(1), NO(1), PL(1), SE(5), SK(2), UK(1)
Lithium	Total 3 FI(1),PT(2)	Total 7 AT (1), CZ(1), DE(1), ES(1), FI(1), PT(2)	3 AT(1), ES(1), UK(1)	16 (40) ² CZ(1), DE(2), ES(2), FI(1), FR(2), GR(1), IE(3), NO(1) SE(3), PT(40) ²
Natural graphite	Total 1 SE (1)	Total 2 SE(1), SK (1)	2 SE(2)	28 CZ(3), DE(1), FI(10), ES(4), SE(2) NO(8)
Nickel		Total 3 SE(3)	6 FI(3),SE(1), UK(2)	21 AT(2), CY(3), DE(1), ES(5), FI (4), LV(1), SK(2), SE(3)

Note 1 – UNFC, Definition of categories (see United Nations Framework Classification (ECE ENERGY SERIES No. 42):

E axis: E1, extraction and sale has been confirmed to be economically viable; E2, expected to become economically viable; E3, not expected to become economically viable or evaluation is at too early a stage.

F axis: F1, feasibility of extraction by a development project or mining operation has been confirmed; F2, feasibility is subject to further evaluation; F3, feasibility cannot be evaluated due to limited technical data.

G axis: G1, quantities associated with a known deposit that can be estimated with a high level of confidence (G1), moderate level of confidence (G2), a low level of confidence (G3)

Note 2 – 40 applications for lithium exploration have been submitted; 12 blocks have been defined for lithium exploration in the Centre and North of Portugal. Public tenders are going to be launched in 2018.

Ongoing projects

Mobility package Action Plan on Batteries Battery raw materials

Commercial projects

Lithium (reserves)

- Alvarrões, Mina do Barroso (PT): 38,940 t
- Keliber (FI): 35,750 t

Potentially commercial projects

Lithium (resources;(reserves))

- Alvarrões, Mina do Barroso: 79,110 t
- Argemela, Sepeda (PT): 89,810 t
- Cinovec (CZ): 1,285,790 t
- Keliber (FI): 50,970 t
- San Jose (ES): 313,860 t
- Wolfsberg: 51,160 t
- Zinnwald (DE): 132,740 t

Non-commercial projects

• Co (10); Li (3); Graphite (2);Ni (21)

Exploration projects

• Co (10); Li (3); Graphite (2);Ni (21)

Lithium projects

Figure 5 – Lithium potentially commercial projects (2016) (Source: Survey on battery raw materials - RMSG, 2018)

