

ONLINE COURSE:

"GOOD CHEMISTRY - METHODOLOGICAL, ETHICAL, AND SOCIAL DIMENSIONS"

ECC7, GENERAL ASSEMBLY, LIVERPOOL AUGUST 26TH 2018

Dr. Jan Mehlich
EuChemS Working Party on Ethics in Chemistry

Team

EuChemS executive board

- President Pilar Goya
- Former president David Cole-Hamilton
- Secretariat (Nineta Hrastelj, Alex Schiphorst)

EuChemS Division of Chemical Education (DivCEd)

- Iwona Maciejowska
- Rachel Mamlok-Naaman

European Chemistry Thematic Network (ECTN)

- Walter Zeller
- Bill Byers
- Paola Ambrogi

EuChemS Working Party on Ethics in Chemistry (WP EiC)

- Hartmut Frank
- Luigi Campanella
- Jan Mehlich

What is the goal?

 "Sustainable education of chemistry students as our future scientists and researchers"

o Goals:

- Good Scientific Practice, Scientific Integrity;
- Responsible professional conduct in academia, industry, or public service;
- Awareness of dual-use potentials and how to deal with it;
- Improving discourse skills.
- Therefore, a proper course needs sections on:
 - Scientific methodology;
 - Research ethics;
 - Social impact of chemistry.

Content

Research Methodology

Science Theory Science History Scientific Method Logic

Scientific

Misconduct

Scientific

Publishing

Limits of science

Scientific statements

Science under uncertainty

Good Scientific Practice

Experimentation

Measurement

Funding and academic freedom

Mentorship

Interest Intellectual

Conflicts of

Property

Animal experiments

Fabrication of data

Falsification of data

Plagiarism

Chemistry and Society

Risk | Precaution

Responsibility

Sustainability

S&T Discourse

Science Communication

Public discourse

S&T Governance

Technology Assessment

Why bother?

- Knowledge and awareness of the normative dimensions of chemistry <u>pays off</u> in the form of:
 - Professional skill and competence
 - Credibility
 - Societal support
 - Sustainable progress
 - Economic benefit

Course Design

- Online Course, provided via e-learning platform Moodle
- Target group: Master (final year) and PhD (early phase) students.
- o 16 classes:
 - 45-60 min. video lecture;
 - Pre-assessment questions, warm-up reflections;
 - Chemical cases (historical, fictional);
 - Reading and discussion assignments;
 - Workshops and forums;
 - Quizzes (test questions for assessment of learning outcome).
- Estimated workload per class: 2-3 hours
- Great organisational flexibility:
 - Entire course = 2 ECTS; selection of 8-10 classes = 1 ECTS
 - Local instructors manage and adapt the course content on Moodle, or combine it with on-site (face-to-face) classes.

Course Outline

European Chemical Society

1	Introduction		European Chemical Societ
2	Scientific Inquiry		
3	The Scientific Method(s)	10	Sustainability
4	Scientific Practice	11	Science and values
5	Scientific Misconduct	12	Responsibility
6	Scientific Publishing	13	Risk, Uncertainty, Precaution
7	Collaborations, Conflicts of Interest, Mentorship	14	Science Governance, Technology Assessment
8	Academic Freedom, Intellectual Property	15	Science Communication
9	Animal Experiments	16	Example: Nanoscience

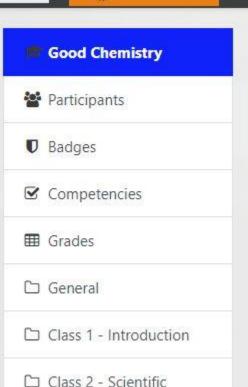
Example

Class No. Class Title

10 Sustail

Sustainability

Summary of content


With this class, we start another section of this course: The impact of chemistry onto society and the environment. Here, the normative framework in the form of an ethos of science that has been used

ENGLISH (EN) -

Class 10 - Sustainability

01 - Warm-up: My own research project and sustainability

02 - Reading assignment: Sustainable and Green Chemistry (Albini, Protti)

03, 05, 07 - Video class: 10 - Sustainability

03, 05, 07 - Lecture Script

04 - Background information: Chemical Leasing

06 - Reading Material: REACH and Sustainability (ECHA report 2017)

👨 08 - Discussion forum: Chemistry & Sustainability

09 - Quiz

1	Warm-up reflection: My own research project and sustainability	
2	Reading assignment: Sustainable and Green Chemistry (Albini, Protti 2016, read	15 min.
	only chapter 1, the rest is optional)	
3	Watch the video, 0:00-32:55	33 min.
4	Further information: Chemical leasing (youtube video)	10 min.
5	Watch the video, 32:56-36:56	4 min.
6	Reading material: REACH and sustainability (read only chapter 2 of the provided	20 min.
	report, the rest is optional)	
7	Watch video, 36:56-end	10 min.
8	Discussion/reflection: Chemistry and Sustainability	15 min.
9	Quiz	5 min.

Course Objectives

- Understanding basic science theory and applying it in daily research activity,
- Increasing knowledge on theory, conduct and communication of chemical science,
- Applying ethics to scientific practice and science assessment,
- Learning concepts of responsibility and sustainability in the context of chemistry,
- Acquiring skills for interdisciplinary normative discourse.

THANK YOU FOR YOUR INTEREST AND ATTENTION!