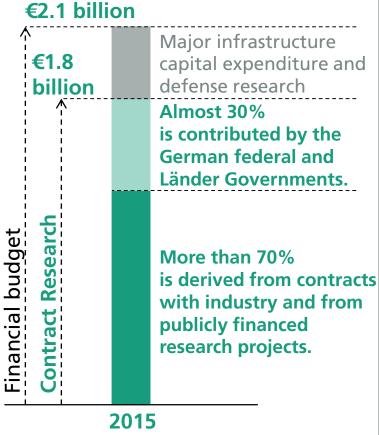
INTRODUCING FRAUNHOFER IGB

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB

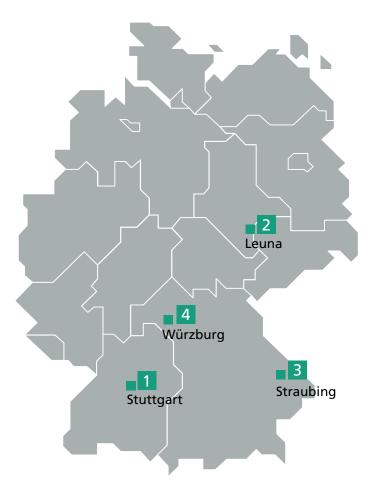
EuCheMS General Assembly, 10th of September 2016, Seville, Spain Achim Weber



The Fraunhofer-Gesellschaft at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

67 institutes and research units


Fraunhofer IGB facts and figures

- Founded in 1953, since 1962 within the Fraunhofer-Gesellschaft
- Located in Stuttgart since 1969, 1976 called Fraunhofer IGB
- 391 employees with €26 million operational budget (2015)
- Approx. 7200 m² total area

Locations of Fraunhofer IGB

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, location Stuttgart

Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna branch

Bio, Electro and Chemocatalysis BioCat,
Straubing branch

Translational Center "Regenerative Therapies for Oncology and Musculoskeletal Diseases" TZKME, Würzburg branch

Research & Business areas

Health

- Coatings and biomaterials for medical applications
- Molecular diagnostics
- Personalized medicine
- Drug discovery and development
- Formulation and release systems
- Food and cosmetics

Chemistry and Process Industry

- Functional surfaces and materials
- Fermentation and biocatalysis
- Biobased chemicals
- Biorefinery concepts
- (Electro-)chemical conversion
- Downstream processing

Environment and **Energy**

- Water and wastewater technologies
- Water monitoring
- (Re)processing of raw and residual materials
- Energy conversion and storage
- Bioenergy

Organigram

Business Development

Dipl.-Agr.-Biol. Sabine Krieg MBA Dr. Uwe Vohrer

University of Stuttgart Liaisons apl. Prof. Dr. Günter Tovar

Press and Public Relations
Dr. Claudia Vorbeck

Directors (acting)

Prof. Dr. Katja Schenke-Layland (executive) Hon.-Prof. Dr. Christian Oehr

Deputy Director

apl. Prof. Dr. Steffen Rupp

Assistants to Director Christine Demmler Sara Bevilacqua Administration

Human Resources and Organization Katja Rösslein M. A.

> Controlling and Finance Dipl.-Kfm. Michael Bangert

Fraunhofer CBP, Leuna branch Dipl.-Chem. (FH) Gerd Unkelbach

> **BioCat, Straubing branch** Prof. Dr. Volker Sieber

Translational Center Regenerative Therapies, Würzburg branch Prof. Dr. Heike Walles

Interfacial Engineering and Materials Science

Hon.-Prof. Dr. Christian Oehr

Dr. Achim Weber

Molecular Biotechnology

apl. Prof. Dr. Steffen Rupp

Dr. Anke Burger-Kentischer Dr. Kai Sohn Physical Process Technology

Dipl.-Ing. Siegfried Egner

Dr. Thomas Scherer Dr. Ana Lucía Vásquez-Caicedo Environmental Biotechnology and Bioprocess Engineering

Dr.-Ing. Ursula Schließmann

Prof. Dr. Dieter Bryniok Dr. Iris Trick Cell and Tissue Engineering

Prof. Dr. K. Schenke-Layland / Prof. Dr. Petra Kluger

Dr. Svenja Hinderer

Membranes

Particle-based Systems and Formulations

Plasma Technology and Thin Films

Polymeric Interfaces and Biomaterials

Infection Biology and Array Technologies

Functional Genomics

Molecular Cell Technologies
Industrial biotechnology

Analytics

Heat and Sorption Systems

Physico-chemical Water Technologies

Nutrient Managements

Aseptic Technologies

Prototype Development

Algae Technology

Bioprocess Engineering

Bioenergy

Integrated Water Management **Test Systems and Implants**

Cardiovascular Systems, Biomaterials and Bioimaging

Attract Group "Organ-on-a-Chip"

/2016

Institute of Interfacial Process Engineering and Plasma Technology IGVP

- Founded in 1994
- 92 employees
- € 3.22 million total budget (2015)
- 1456 m² area for laboratories, technical centers and offices

Our innovation chain from fundamental research to industrial implementation

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, location Stuttgart

Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna branch

Bio, Electro, and Chemocatalysis BioCat, Straubing branch

Translational Center
"Regenerative Therapies
for Oncology and
Musculoskeletal
Diseases" TZKME,
Würzburg branch

and Plasma Technology

Research highlights of Fraunhofer IGB

Health

Cell-free "off the shelf" heart valve by electrospinning

RIBOLUTION
Platform for the identification of ncRNA-based diagnostics

Screening for new immunmodulators with cell-based TLR-assay

Bioprinting ECM based bioinks for cartilage reconstruction

Chemistry and Process Industry

Anti-icing coating Reduction of ice adhesion by more than 90 %

Polymeric adsorber particles for selective removal or concentration

BioSurf – New production strategies for biosurfactants

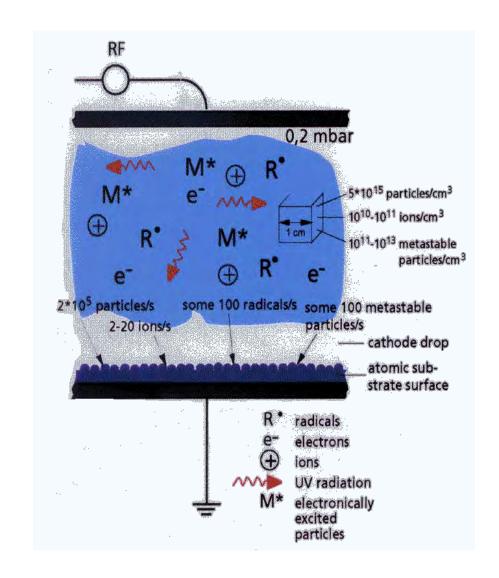
Lignocellulose biorefinery – Successful implementation on the pilot scale

Environment and **Energy**

Toxikomb – Detection of hazardous substances in drinking water

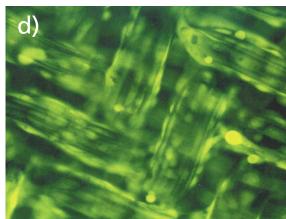
Molecular Sorting – Recovery of metals

Membrane for energy conversion by osmosis

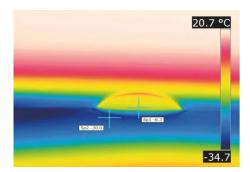

Microalgal starch as a fermentation substrate for biofuel production

Interaction of Plasmas with Surfaces

Species generated in a glow discharge


Tailored Surfaces

- a) Scratch-resistant coating on polymers
- b) Solvent-resistant coating on polycarbonate
- c) Hydrophobic finish of cotton/polyester
- d) Treatment of textile substrates for enhanced cell growth


Anti-ice coatings using plasma functionalized surfaces

Development of anti-ice coatings

- Icing of wind power plants, aircraft or solar cells entail greater expense
- Water-repellent micro- and nanostructured coatings on polymer films using plasma technology
- Minimization of ice formation on the surfaces by more than 90 percent (compared with the reference)

Partners: EADS Innovation Works, CEROBEAR GmbH, PINK GmbH, ROWO Coating Gesellschaft für Beschichtungen mbH, Bremen Center for Computational Materials Science (BCCMS) at the University of Bremen.

Research highlights of Fraunhofer IGB

Health

Cell-free "off the shelf" heart valve by electrospinning

RIBOLUTION
Platform for the identification of ncRNA-based diagnostics

Screening for new immunmodulators with cell-based TLR-assay

Bioprinting ECM based bioinks for cartilage reconstruction

Chemistry and Process Industry

Anti-icing coating Reduction of ice adhesion by more than 90 %

Polymeric adsorber particles for selective removal or concentration

BioSurf – New production strategies for biosurfactants

Lignocellulose biorefinery – Successful implementation on the pilot scale

Environment and **Energy**

Toxikomb – Detection of hazardous substances in drinking water

Molecular Sorting – Recovery of metals

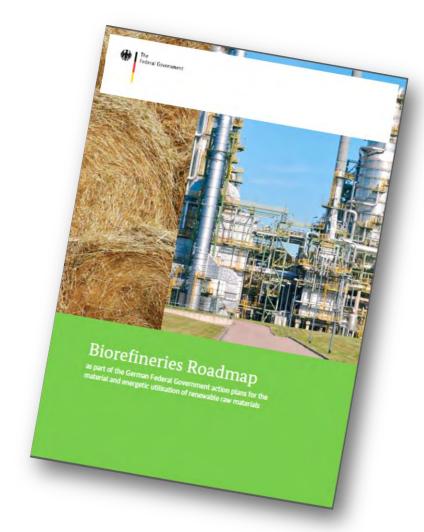
Membrane for energy conversion by osmosis

Microalgal starch as a fermentation substrate for biofuel production

FRAUNHOFER CENTER FOR CHEMICAL-BIOTECHNOLOGICAL PROCESSES CBP

Challenges for the transfer of petrochemical-based manufacturing into renewable-based manufacturing

- Feedstock availability and logistics
- Feedstock composition
 - Feedstock pretreatment
 - Process development and scale-up
 - Resource efficiency and recycling
- Integration in value chains
- Consumer acceptance
- Manufacturing costs

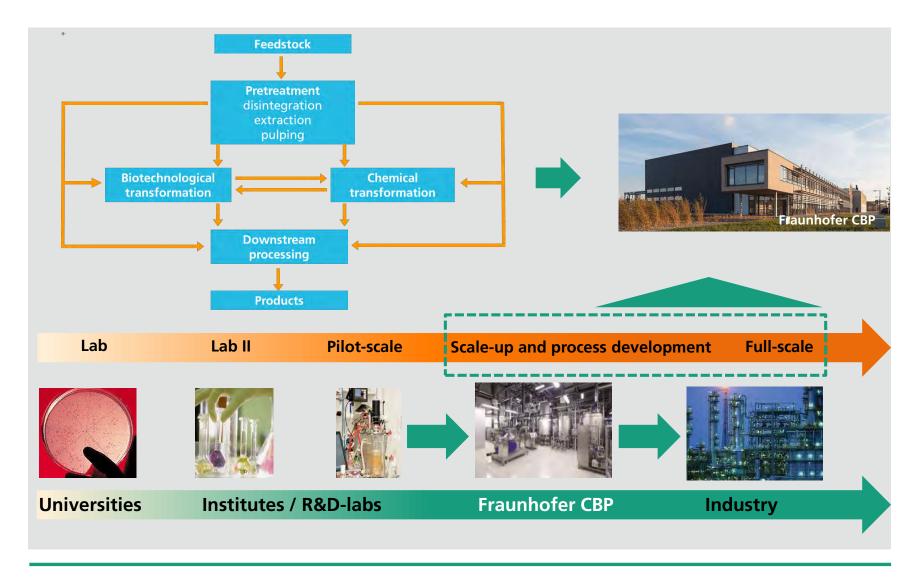


Types of biorefineries

What is meant by a biorefinery?

A biorefinery is characterised by an explicitly integrative, multifunctional overall concept that uses biomass as a diverse source of raw materials for the sustainable generation of a spectrum of different intermediates and products (chemicals, materials, bioenergy/biofuels), allowing the fullest possible use of all raw material components. The co-products can also be food and/or feed. These objectives necessitate the integration of a range of different methods and technologies.

- 1. Sugar biorefinery and starch biorefinery
- Vegetable oil biorefinery and algal lipid biorefinery
- 3. Lignocellulosic (cellulose, hemicellulose and lignin) biorefinery and green biorefinery
- 4. Synthesis gas biorefinery
- 5. Biogas biorefinery



From laboratory to industrial scale

CBP

Research highlights of Fraunhofer IGB

Health

Cell-free "off the shelf" heart valve by electrospinning

RIBOLUTION
Platform for the identification of ncRNA-based diagnostics

Screening for new immunmodulators with cell-based

Bioprinting ECM based bioinks for cartilage reconstruction

Chemistry and Process Industry

Anti-icing coating Reduction of ice adhesion by more than 90 %

Polymeric adsorber particles for selective removal or concentration

BioSurf – New production strategies for biosurfactants

Lignocellulose biorefinery – Successful implementation on the pilot scale

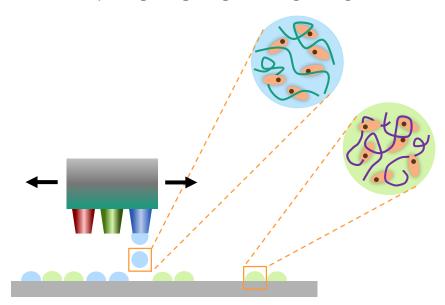
Environment and **Energy**

Toxikomb – Detection of hazardous substances in drinking water

Molecular Sorting – Recovery of metals

Membrane for energy conversion by osmosis

Microalgal starch as a fermentation substrate for biofuel production



Bioprinting

Definition: "...use of material transfer processes for patterning and assembling biological and biologically relevant materials - molecules, cells, tissues, and [...] biomaterials - ...to accomplish one or more biological functions".

[Mironov, V., Reis, N. & Derby, B. Review: bioprinting: a beginning. Tissue engineering 433 12, 631-634, (2006)].

Bio-ink development

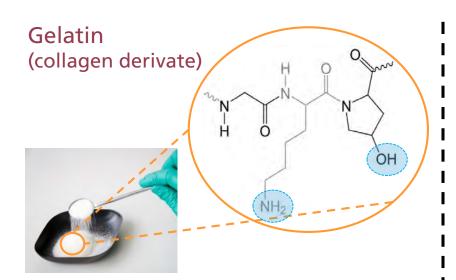
"Bioink" (hydrogel-precursor)

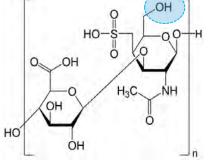
- viscosity, gelling behaviour
- crosslinkability
- cytocompatibility

3D hydrogel matrix

cytocompatibility

ECM derived biopolymer


- tissue-specific stiffness, swellability
- stabilized cell-function



Crosslinkable and printable biopolymers

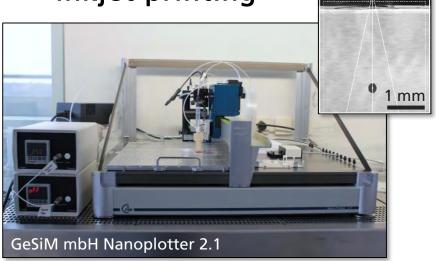
Glykosamino glykanes (Chondroitin sulfate, hyaluronic acid)

1. Crosslinkable biopolymers: GM, CSM, HAM

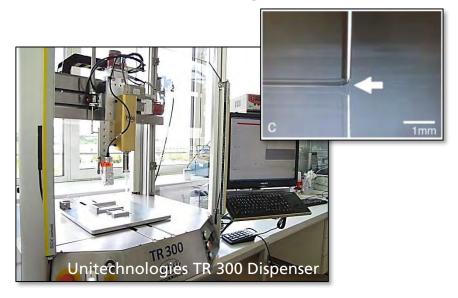
Methacrylic acid anhydride

2. Printable gelatin – masking **GMA**

Acetic acid anhydride



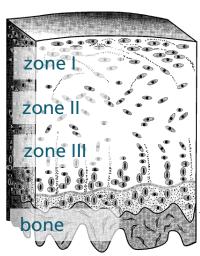
Printers

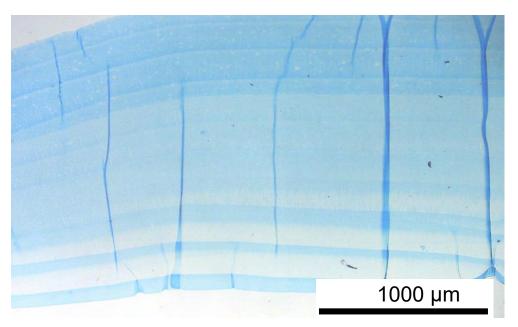

Drop-on-demand inkjet-printing

- Piezo drop-on-demand nanopipette
- Disposable cartrigdes with heater
- Drop volume: 400-800 pL
- UV-source

Dispensing

- Pneumatic dispenser
- Disposable pipettes
- Min. dispensing volume: 1 μL
- UV-source




ECM based bioinks for cartilage reconstruction

Dispensing

- Layer-by-layer assembly gradients
- Integration of chondrocytes

Zonal structure of articular cartilage

Gradient of chondroitin sulphate by dispensing (alcian blue staining)

Hoch, Stier, Borchers: in preparation (2016)

Contact

Dr. Achim Weber

Nobelstr. 12 D-70569 Stuttgart

Phone +49 711 970-4022

E-Mail achim.weber@igb.fraunhofer.de

www.igb.fraunhofer.de

