HUNTING THE ELEMENTS OF THE PERIODIC TABLE ON SPACESHIP EARTH

Nicola Armaroli

Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche, Bologna nicola.armaroli@cnr.it

EuCheMS Brussels, September 22, 2015

PERIODIC TABLE – The ordinary picture –

PERIODIC TABLE – The quantitative picture –

ENIAC

the first electronic computer (1944)

- Weigth: ≈ 30 t
- Valves: 19 000
- Consumption: 200 000 W

THIS COMPUTER

Weigth: 1.5 kg Consumption: 30 W 1.3 billions of transistors Average dimension: 22 nm

Nicola Armaroli, CNR, Italy – Protecting Endangered Elements, EuCheMS, Brussels, Sept. 22, 2015

How small can a transistor be?

The evolution of microprocessor manufacturing processes

THE CHAMPION OF DEMATERIALIZATION

129 grams

SONY

HD

THE PRICE TO PAY: A MORE INTENSIVE HUNTING OF THE PERIODIC TABLE

2015

Over 40 elements in a mobile phone

1990

Less than 20 elements in an entire house

Source: http://www.compoundchem.com

DEMATERIALISATION MATERIAL INTENSIFICATION

OUR "MINE": A TINY SPACESHIP EARTH

We can dig down to about <u>5 km</u>

MINERAL "RESOURCES" AND "RESERVES"

Critical Raw Materials for the EU, The European Commission, 2010

ENDANGERED ELEMENTS: SELECTED EXAMPLES

HELIUM

helium 2 **He** 4.0026

GAS – 2nd most abundant element of the Universe, but very rare on Earth, where it escapes from (0.0005% of the volume of the atmosphere)

Main source: natural gas wells (from nuclear decay)

US has been always the dominant world market player, through its Federal Helium Reserve in Texas

HELIUM: Absolutely unique physical properties

Boiling point: -268,93 °C (4.22 K) Melting point: -272,20 °C (0.94 K) Below 2K, it enters a superfluid state with no apparent viscosity and extremely high thermal conductivity. Perfect for extreme cryogenic uses

LITHIUM

METAL – very unstable in air and water. Major producers: Australia, Chile and China. Estimated world <u>reserves</u>: 13.5 Mton

The largest <u>resource</u> in the world: Salar de Uyuni, Bolivia 10,000 km²

LITHIUM: demand projected to explode

3 Li Lithium 6.941 The lightest solid metal with the highest electrochemical potential: high gravimetric and volumetric energy and power density IDEAL FOR BATTERIES

Cars sold per year worldwide: 70 millions If electric : ≈ 700 000 ton of Li required Current Li world production: 36 000 ton/y (USGS, 2014)

Lithium is also needed for portable devices, ceramics, lubricants, alloys and ... Tritium (nuclear fusion). RECYCLING WILL BE CRUCIAL (not difficult)

INDIUM

METAL – soft and stable in air and water. Major producers: China, South Korea and Japan. Estimated reserves: unknown (USGS, 2015)

Relatively useless until 20 years ago, then ...

Indium Tin Oxide (ITO)

Transparent, conductor, binds strongly to glass

Environ. Sci. Technol. 2013, 47, 2939

Nicola Armaroli, CNR, Italy – Protecting Endangered Elements, EuCheMS, Brussels, Sept. 22, 2015

INDIUM IS NOT OBTAINED DIRECTLY

ATTRACTOR METALS (Pt, Pd, Cu, Zn, Al, Sn, La, Ce, Nd, Y)

"HITCHHIKERS" (Co, Rh, Ru, Ir, Os, Mo, Re, Te, Se, Ge, In, Ga, Nb, Ta, heavy rare earth elements)

Price volatility, risk of uncontrolled supply disruptions

RARE EARTH ELEMENTS (REE)

riod	Group 1																	18	
Pel	1				Nonm	netals			Meta	alloids			2						
1	Н		Alkali metals							Halogenes									
	1.008	2		Alkaline Earth metals						le gases	5		13	14	15	16	17	4.003	
-	3	4			Trans	ition ele	ments	5)	Lant	hanide	•		5	6	7	8	9	10	
2	LI	Be			Othor	motolo	mento		Actio	ndnac.	•		В	C	IN	0	F	Ne	
	0.941	9.012		Other metals						lides			10.81	12.01	14.01	16	17	10.18	
3	Na	Ma											AI	Si	P	S	CL	Ar	
	22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	39,10	40.08	44.96	47,88	50,94	52	54.94	55,85	58.47	58,69	63,55	65,39	69.72	72.59	74.92	78.96	79.9	83.8	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
6	Cs	Ва	La	Hf	la	W	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn	
	132.9	137.3	138.9	178.5	180.9	183.9	186.2	190,2	192.2	195.1	197	200.5	204.4	207.2	209	(210)	(210)	(222)	
-	8/ Er	Do	89	Df	Dh	106 Sci	Dh	108	N/I+	De	Ra	112	115	Llua	Llup	110		118	
1	(223)	(226)	(227)	(257)	(260)	(263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	(292)	ous	ouo	
			-	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
			6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Но	Er	Tm	Yb	Lu		
			Ĭ	140.1	140.9	144.2	(147)	150.4	152	157.3	158.9	162.5	164.9	167.3	168.9	173	175		
			-	90	91	92	93	94	95	96	97	98	99	100	101	102	103	-	
			7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				232	(231)	(238)	(237)	(242)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(254)	(257)		

Unique <u>MAGNETIC</u> <u>PHOSPHORESCENT</u> <u>OPTICAL</u> <u>CATALYTIC</u> properties

14 "LANTHANIDES" (no Pm) + Sc and Y

RELATIVE CONCENTRATION OF ELEMENTS (upper continental crust)

REE ARE NOT SO RARE BUT ARE RARELY CONCENTRATED ENOUGH TO SUPPORT ECONOMICALLY CONVENIENT RECOVERY

Light REE: Sc, La, Ce, Pr, Nd, Pm, Sm, Eu

REE: CRUCIAL FOR A NUMBER OF APPLICATIONS

ChemSusChem 2013, 6, 2045

http://www.rareelementresources.com

REE: THE CHINESE SUPPLY MONOPOLY

No good news from U.S.

BUSINESS

Chem. Eng. News **2015**, *July 27*, p. 36

THE STRUGGLE TO MINE RARE EARTHS

Molycorp faces operating and financial hurdles at the only U.S. RARE-EARTH MINE MELODY M. BOMGARDNER, C&EN WEST COAST NEWS BUREAU

AS TWO FULL TOUR BUSES arrived at Molycorp's rare-earth mine in Mountain Pass, Calif, late last month, thick clouds cast merciful shade on the high desert. The mine is located about anhour southwest of Las Vegas, where the temperature was expected to reach 110°F. Yet, a more ominous shadow lurked over the event: Four days earlier, Molycorp had filed for Chapter 11 bankruptcy.

The visitors were greeted by Jim Sims, Molycorp's head of communications. "The timing of this event is a little strange," he acknowledged, "but we are operational." The state of operations at the mine is of great interest not just to Molycorp's creditors but also to manufacturers of products that contain rare earths such as electric vehicles, electronics, wind turbines, lighting, and batteries. Today, 90% of the world's rare earths are produced in China. It would be closer to 100% but for Molycorp's output of cerium, lanthanum, neodymium, and praseodymium oxides and carbonates.

China's near-monopoly gained widespread attention in 2010 when the country lowered export quotas for rare earths, causing prices to skyrocket. Starting in 2012, however, prices began to decline. In May, China did away with the quotas following a nuling from the World Trade Organization.

The price run-up spurred calls for development of rare earths from mines outside of China—in particular the Mountain Pass mine. But mining companies are now caught in a bind: They are working to increase output at a time when lower prices make it extremely difficult to turn a profit. Looking ahead, Molycorp will need to both increase production and obtain higher—or at least stable—prices to survive, goals that can be mutually exclusive in today's market, experts say.

ENDANGERED ELEMENTS AND THE TRANSITION TO A SUN-POWERED WORLD

FOR USING SOLAR ENERGY WE NEED PHOTONS AND ATOMS (*i.e.*, CHEMICAL ELEMENTS)

We need <u>CONVERTERS</u> of solar energy, made of "terrestrial" materials, which are available in limited supply

Photons are an overabundant "extraterrestrial" input amounting to <u>THOUSANDS</u> of times our needs

RARE ELEMENTS IN RENEWABLE AND EFFICIENT ENERGY TECHNOLOGIES

THIN FILM PV PANELS: Indium, Gallium, Tellurium

Neodymium, Praseodymium, Dysprosium

- Neodymium, Praseodymium Dysprosium
- Lanthanum, Cerium; Lithium, Cobalt,

Europium, Terbium, Yttrium, Cerium

LIGHTING EFFICIENCY COMES AT A PRICE

THERE ARE ALSO ENVIRONMENTAL AND SOCIAL COSTS

REE tailings pond near Baotou, China

Sept 2013

NGM

Gold extraction, NE Congo

TIME

15 Sept 2015

Bingham Canyon Cu Mine Utah, USA (4 km wide, 1 km deep)

REPLACEMENT? NOT OFTEN POSSIBLE YET

н		THE PERIODIC TABLE OF															He
Li 41	Be 63		SUB	STI	Γυτ	E PI	ERF	ORM		ICE		B 41	С	N	0	F	Ne
Na	Mg 94		OF I	MET	ALS		Al 44	Si	Р	S	CI	Ar					
к	Ca	Sc 65	Ti 63	V 63	Cr 76	Mn 96	Fe 57	Co 54	Ni 62	Cu 70	Zn 38	Ga 38	Ge 44	As 38	Se 47	Br	Kr
Rb	Sr 78	Y 95	Zr 66	Nb 42	Mo 70	Tc	Ru 63	Rh 96	Pd 39	Ag 44	Cd 38	In 60	Sn 36	Sb 57	Te 38	1	Xe
Cs	Ba 63	•	Hf 38	Ta 41	W 53	Re 90	Os 38	lr 69	Pt 66	Au 40	Hg 45	Tl 100	Pb 100	Bi 46	Ро	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo
	Lanthanide	es	La 75	Ce 60	Pr 41	Nd 41	Pm	Sm 38	Eu 100	Gd 63	Tb 63	Dy 100	Ho 63	Er 63	Tm 88	Yb 88	Lu 63
	•• Actinide:	s	Ac	Th 35	Ра	U 63	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
							Su	Ibstitute	e Perfor	mance							
					Excell	ent 0 1	10 20	30 40	50 60	70 80	90 1	Poor 00					

0 : exemplary substitutes exist for all major uses 100 : no substitute with adequate performance exists for any of the major uses

Proc. Natl. Acad. Sci. USA 2015, 112, 6295

AN EXAMPLE FROM OUR LAB AT CNR, Bologna

Application: flat lighting sources (OLEDs, LECs)

Standard materials: Ir(III) metal complexes

- TUNABLE - STABLE

Alternative materials: Cu(I) metal complexes

NOT COMPARABLY TUNABLE AND STABLE

Large use, no stock: the case of ALUMINUM

IN USE 90 kg/capita

RESERVES IN BAUXITE 900 kg/capita

EU IMPORT OF METALS

Material Resources and Waste – Update 2012, EEA 2012

THE SCIENCE FICTION ONE: MINING ASTEROIDS

78

77

46

79

Pt

Platinum 195.08

Ir

Iridium

Pd

Palladium

106.42

Au

Gold 196.967

CONCENTRATION (ppb)

Asteroids

1400

760

870

215

Earth

5

1

15

Δ

Photo Credit: National Geographic

This in <u>NOT</u> an option!

THE REAL ONE: RECYCLING

1 H			RΔ	TE	0	F	RF				G							2 He
3 Li	4 Be					۰ ۸	ΛĘ.	.ς ΤΔ					5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		13 14 15 16 17 Al Si P S Cl															18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	2 N	25 /In	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	4 7	13 Гс	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	7 F	75 ?e	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	104 Rf	105 Db	5 100 Sg	6 1 E	07 ⁻ 3h	108 H s	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	(117) (Uus)	118 Uuo
* Lanthanides 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71																		
** Actinides				La 89	Ce 90	Pr 91	Nd 92	93	n Sr 3 94	n Eu 4 95	Gd 96	Tb 97	Dy 98	Ho 99	Er 100	Tm 101	Yb 102	Lu 103
Ac ſh Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr <1% 1-10% >10-25% >25-50% >50%																		

Science **2012**, *337*, 690

Present recycling rates are TOTALLY unacceptable

A (VERY) TENTATIVE ROADMAP

5-10 years

- Increase public awareness
 on Earth's material constraints
- Improve collecting policies
- Lobbying for more stringent regulations on material contents and recycling and ... information

RESEARCH

- Reduce the number of elements in, *e.g.*, electronic devices
- Reduce mixing of elements to enhance traceability
- Enable standardized disassembly protocols

10-30 years

- Waste collection > 90% worldwide
- A reliable world inventory of recoverable mineral resources
- International agreements on fair use and exploitation of mineral resources to prevent resource wars

RESEARCH

- Find adequate replacements for any applications
- Reduce energy consumption of recycling by at least 50%
- Target a standard > 80%
 recycling rate

SUMMARY

- There is only one relevant and utterly abundant (extraterrestrial) resource for planet Earth: solar radiation
- On the contrary, all kinds of materials must be obtained from planet Earth, a sort of spaceship with limited resources in its hold
- Criticality of elements is dictated by (1) natural availability,
 (2) environmental implications, (3) vulnerability to supply risk
- We need to develop recycling protocols at all levels and for any products, in order to secure the availability of chemical elements and hence the quality of life of human beings on the long term
- <u>WARNING</u>. The 2nd Principle works against us and, sometimes, recycling may become *downcycling* with materials being used for lower-grade applications

A FINAL CONSIDERATION

85% of chemical elements were discovered in Europe, so ...